974 research outputs found

    Wind tunnel results of advanced high speed propellers in the takeoff, climb and landing operating regimes

    Get PDF
    Low speed wind tunnel performance tests of two advanced propellers were completed. The 62.2 cm diameter adjustable pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds in the 10 by 10 ft Supersonic Wind Tunnel. Both models had eight blades and a cruise design point operating condition of 0.80 Mach number, 10.668 km S.A. altitude, 243.8 m/s tip speed and a high power loading of 301 kW sq m. No adverse or unusual low speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propellers. The 45 deg swept propeller efficiency exceeded the straight blade efficiency by 4 to 5%. Typical net efficiencies of the straight and 45 deg swept propeller at a Mach 0.20 takeoff condition were 50.2 and 54.9% respectively. At a Mach 0.34 climb condition, the efficiencies were 53.7 and 59.1%. Reverse thrust data indicates that these propellers are capable of producing more reverse thrust at Mach 0.20 than a high bypass turbofan engine at Mach 0.20

    Noise of the 10-bladed 60 deg swept SR-5 propeller in a wind tunnel

    Get PDF
    Noise generated by supersonic helical tip speed propellers is a possible cabin environment problem for future airplanes powered by these propellers. Noise characteristics of one of these propellers, designated SR-5, are presented. A matrix of tests was conducted to provide as much acoustic information as possible. During aerodynamic testing it was discovered that the propeller had an aeroelastic instability which prevented testing the propeller at its design advance ratio of 4.08 at axial Mach numbers over 0.7. Plots of the variation of the maximum blade passage tone with helical tip Mach number indicate that, at higher helical tip Mach numbers, the propeller operated on sharply increasing portion of the noise curve; therefore, extrapolations to the design condition would not be accurate. A possible extrapolation indicated that SR-5 at its design point should be quieter than SR-3 at its design point. Directivity plots at the higher helical tip Mach numbers indicate a lobed directivity pattern as was observed previously on the SR-3 propeller

    Transformacija raspodjele čeličnih proizvoda u Poljskoj i Slovačkoj

    Get PDF
    Steel industry is one of the most globalized branch, globalization has had the influence on iron ore supply, steel production and distribution as well. In last years, steel products distribution process has changed significantly, because of rising competitiveness due to common world market influence and main global players actions. The paper presents changes in steel products distribution in Poland and Slovakia focusing on main steel producers activity in distribution as well as distributors response on new market situation.Čelična industrija je jedna od najviše globaliziranih grana s utjecajem na opskrbu čeličnih proizvoda i njihovoj raspodjeli. U posljednjim godinama raspodjela čeličnih proizvoda značajno se promijenila glede utjecaja konkurencije u zajedničkom svjetskom tržištu i presudnim globalnim akcijama. Članak daje izmjene u raspodjeli čeličnih proizvoda u Poljskoj i Slovačkoj s naglaskom na najvažnije akcije proizvođača čelika i odgovarajuće raspodjele pri novoj tržišnoj situaciji

    Transformation on steel products distribution in Poland and Slovakia

    Get PDF
    Steel industry is one of the most globalized branch, globalization has had the influence on iron ore supply, steel production and distribution as well. In last years, steel products distribution process has changed significantly, because of rising competitiveness due to common world market influence and main global players actions. The paper presents changes in steel products distribution in Poland and Slovakia focusing on main steel producers activity in distribution as well as distributors response on new market situation

    Noise of the 10-bladed, 40 deg swept SR-6 propeller in a wind tunnel

    Get PDF
    The noise generated by supersonic helical-tip-speed propellers is a likely cabin environment problem for future airplanes powered by these propellers. Three propeller models with different tip sweeps. SR-1M, SR-2, and SR-3, designed for 244 m/sec (800 ft/sec) tip speed at a flight Mach number of 0.8 were previously tested in the NASA Lewis 8- by 6-Foot Wind Tunnel. In order to investigated another design point condition, the SR-6 propeller was designed for 213 m-sec (700 ft/sec) tip speed at a flight Mach number of 0.8. The noise data from this propeller are reported herein. Curves of blade passing frequency noise versus tip Mach number (at constant advance ratio) showed that the SR-6 propeller behaved similarly to the SR-1M propeller. The noise of the SR-6 propeller at its design condition, helical tip Mach number of 1.07, is approximately 3 dB quieter than the SR-2 propeller at its higher design helical tip Mach number of 1.15, but about 2.5 dB noisier than SR-3 at its design condition. The helical tip Mach number shift of the steep noise rise followed the same progression as the blade sweep angle for all of the propellers. When operated at the SR-3 design point, the SR-6 propeller was approximately 1.5 dB quieter than SR-2 and 4 dB noisier than SR-3

    Comparisons of Flutter Analyses for an Experimental Fan

    Get PDF
    Two propulsion aeroelasticity codes were used to model the aeroelastic characteristics of an experimental forward-swept fan that encountered flutter during wind tunnel testing. Both of these three-dimensional codes model the unsteady flowfield due to blade vibrations using the Navier-Stokes equations. In the first approach, the unsteady flow equations are solved using an implicit time-marching approach. In the second approach, the unsteady flow equations are converted to a harmonic balance form and solved using a pseudo-time marching method. This paper describes the flutter calculations and compares the results to experimental measurements

    TURBOMAT: A Probabilistic Turbomachinery Aeroelastic Analysis Tool

    Get PDF
    An integration of aeroelastic analysis procedures with probabilistic analysis methods enables us to design safe reliable engines with quantified reliability. Towards this goal, a graphical user interface (GUI) based tool that integrates the codes Aeroelastic analysis of propfans (ASTROP2) and Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) is developed. The tool entitled TURBOMachinery Aeroelastic Analysis Tool (TURBOMAT), is developed utilizing the MATrix Laboratory (Matlab) Guide (Graphical User Interface Development) tool box. TURBOMAT provides a user friendly computational environment for rapid assessment of Turbomachinery blades flutter characteristics, subjected to uncertain loading conditions with variability in material and aerodynamic properties. The tool is seen as an education tool for new students and young engineers starting their careers in structural Aeroelasticity who want to learn and understand aeroelastic aspects of turbomachinery components, fans, compressors and turbines, including uncertainties in loading and material properties.A typical fan blade configuration geometry was chosen to demonstrate the tool. The results are presented in the form of probabilistic density function (PDF), the cumulative distribution function (CDF) and sensitivity factors. Both first order fast probability integration (FPI) and the Monto Carlo (MC) techniques are used in the analysis and compared. The tool enabled us to quantify blade flutter reliability as well as the ranking of uncertain variables and their importance to blade flutter response

    A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    Get PDF
    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis)

    Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Get PDF
    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster

    Cyclic Symmetry Finite Element Forced Response Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    Get PDF
    Accurate prediction of the blade vibration stress is required to determine overall durability of fan blade design under Boundary Layer Ingestion (BLI) distorted flow environments. Traditional single blade modeling technique is incapable of representing accurate modeling for the entire rotor blade system subject to complex dynamic loading behaviors and vibrations in distorted flow conditions. A particular objective of our work was to develop a high-fidelity full-rotor aeromechanics analysis capability for a system subjected to a distorted inlet flow by applying cyclic symmetry finite element modeling methodology. This reduction modeling method allows computationally very efficient analysis using a small periodic section of the full rotor blade system. Experimental testing by the use of the 8-foot by 6-foot Supersonic Wind Tunnel Test facility at NASA Glenn Research Center was also carried out for the system designated as the Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan (BLI2DTF) technology development. The results obtained from the present numerical modeling technique were evaluated with those of the wind tunnel experimental test, toward establishing a computationally efficient aeromechanics analysis modeling tool facilitating for analyses of the full rotor blade systems subjected to a distorted inlet flow conditions. Fairly good correlations were achieved hence our computational modeling techniques were fully demonstrated. The analysis result showed that the safety margin requirement set in the BLI2DTF fan blade design provided a sufficient margin with respect to the operating speed range
    corecore