45 research outputs found

    Chaos Synchronisation in zeitverzögert gekoppelten Netzwerken

    No full text
    Die vorliegende Arbeit befasst sich mit der Untersuchung verschiedener Aspekte der Chaos Synchronisation von Netzwerken mit zeitverzögerten Kopplungen. Ein Netzwerk aus identischen chaotischen Einheiten kann vollständig und isochron synchronisieren, auch wenn der Signalaustausch einer starken Zeitverzögerung unterliegt. Im ersten Teil der Arbeit werden Systeme mit mehreren Zeitverzögerungen betrachtet. Dabei erstrecken sich die verschiedenen Zeitverzögerungen jeweils über einen weiten Bereich an Größenordnungen. Es wird gezeigt, dass diese Zeitverzögerungen im Lyapunov Spektrum des Systems auftreten; verschiedene Teile des Spektrums skalieren jeweils mit einer der Zeitverzögerungen. Anhand des Skalierungsverhaltens des maximalen Lyapunov Exponenten können verschiedene Arten von Chaos definiert werden. Diese bestimmen die Synchronisationseigenschaften eines Netzwerkes und werden insbesondere wichtig bei hierarchischen Netzwerken, d.h. bei Netzwerken bestehend aus Unternetzwerken, bei welchen Signale innerhalb des Unternetzwerkes auf einer anderen Zeitskala ausgetauscht werden als zwischen verschiedenen Unternetzwerken. Für ein solches System kann sowohl vollständige als auch Unternetzwerksynchronisation auftreten. Skaliert der maximale Lyapunov Exponent mit der kürzeren Zeitverzögerung des Unternetzwerkes dann können nur die Elemente des Unternetzwerkes synchronisieren. Skaliert der maximale Lyapunov Exponent allerdings mit der längeren Zeitverzögerung kann das komplette Netzwerk vollständig synchronisieren. Dies wird analytisch für die Bernoulli Abbildung und numerisch für die Zelt Abbildung gezeigt. Der zweite Teil befasst sich mit der Attraktordimension und ihrer Änderung am Übergang zur vollständiger Chaos Synchronisation. Aus dem Lyapunov Spektrum des Systems wird die Kaplan-Yorke Dimension berechnet und es wird gezeigt, dass diese am Synchronisationsübergang aus physikalischen Gründen einen Sprung haben muss. Aus der Zeitreihe der Dynamik des Systems wird die Korrelationsdimension bestimmt und anschließend mit der Kaplan-Yorke Dimension verglichen. Für Bernoulli Systeme finden wir in der Tat eine Diskontinuität in der Korrelationsdimension. Die Stärke des Sprungs der Kaplan-Yorke Dimension wird für ein Netzwerk aus Bernoulli Einheiten als Funktion der Netzwerkgröße berechnet. Desweiteren wird das Skalierungsverhalten der Kaplan-Yorke Dimension sowie der Kolmogoroventropie in Abhängigkeit der Systemgröße und der Zeitverzögerung untersucht. Zu guter Letzt wird eine Verstimmung der Einheiten, d.h., ein "parameter mismatch", eingeführt und analysiert wie diese das Verhalten der Attraktordimension ändert. Im dritten und letzten Teil wird die lineare Antwort eines synchronisierten chaotischen Systems auf eine kleine externe Störung untersucht. Diese Störung bewirkt eine Abweichung der Einheiten vom perfekt synchronisierten Zustand. Die Verteilung der Abstände zwischen zwei Einheiten dient als Maß für die lineare Antwort des Systems. Diese Verteilung sowie ihre Momente werden numerisch und für Spezialfälle auch analytisch berechnet. Wir finden, dass im synchronisierten Zustand, in Abhängigkeit der Parameter des Systems, Verteilungen auftreten können die einem Potenzgesetz gehorchen und dessen Momente divergieren. Als weiteres Maß für die lineare Antwort wird die Bit Error Rate einer übermittelten binären Nachricht verwendet. The Bit Error Rate ist durch ein Integral über die Verteilung der Abstände gegeben. In dieser Arbeit wird sie vorwiegend numerisch untersucht und wir finden ein komplexes, nicht monotones Verhalten als Funktion der Kopplungsstärke. Für Spezialfälle weist die Bit Error Rate eine "devil's staircase" auf, welche mit einer fraktalen Struktur in der Verteilung der Abstände verknüpft ist. Die lineare Antwort des Systems auf eine harmonische Störung wird ebenfalls untersucht. Es treten Resonanzen auf, welche in Abhängigkeit von der Zeitverzögerung unterdrückt oder verstärkt werden. Eine bi-direktional gekoppelte Kette aus drei Einheiten kann eine Störung vollständig heraus filtern, so dass die Bit Error Rate und auch das zweite Moment verschwinden.In this thesis we study various aspects of chaos synchronization of time-delayed coupled chaotic maps. A network of identical nonlinear units interacting by time-delayed couplings can synchronize to a common chaotic trajectory. Even for large delay times the system can completely synchronize without any time shift. In the first part we study chaotic systems with multiple time delays that range over several orders of magnitude. We show that these time scales emerge in the Lyapunov spectrum: Different parts of the spectrum scale with the different delays. We define various types of chaos depending on the scaling of the maximum exponent. The type of chaos determines the synchronization ability of coupled networks. This is, in particular, relevant for the synchronization properties of networks of networks where time delays within a subnetwork are shorter than the corresponding time delays between the different subnetworks. If the maximum Lyapunov exponent scales with the short intra-network delay, only the elements within a subnetwork can synchronize. If, however, the maximum Lyapunov exponent scales with the long inter-network connection, complete synchronization of all elements is possible. The results are illustrated analytically for Bernoulli maps and numerically for tent maps. In the second part the attractor dimension at the transition to complete chaos synchronization is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. Finally, we study the change in the attractor dimension for systems with parameter mismatch. In the third and last part the linear response of synchronized chaotic systems to small external perturbations is studied. The distribution of the distances from the synchronization manifold, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transmitted signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments. The linear response is also quantified by means of the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is studied numerically for Bernoulli, tent and logistic maps. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devil's staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bi-directionally coupled chain of three units can completely filter out the perturbation. Thus the second moment and the bit error rate become zero

    Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

    Get PDF
    The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. © 2013 American Physical Society.Peer Reviewe

    Retrospective assessment of self-reported exposure to medical ionizing radiation: Results of a feasibility study conducted in Germany

    No full text
    BACKGROUND: Exposure to medical ionizing radiation has been increasing over the past decades and constitutes the largest contributor to overall radiation exposure in the general population. While occupational exposures are generally monitored by national radiation protection agencies, individual data on medical radiation exposure for the general public are not regularly collected. The aim of this study was to determine the feasibility of assessing lifetime medical ionizing radiation exposure from diagnostic and therapeutic procedures retrospectively and prospectively within the framework of the German National Cohort study. METHODS: Retrospective assessment of individual medical radiation exposure was done using an interviewer-based questionnaire among 199 participants (87 men and 112 women) aged 20–69 randomly drawn from the general population at two recruitment locations in Germany. X-ray cards were distributed to 97 participants at one recruitment center to prospectively collect medical radiation exposure over a 6-month period. The Wilcoxon–Mann–Whitney test was used to test differences in self-reported median examination frequencies for the variables age, sex, and recruitment center. To evaluate the self-reported information on radiological procedures, agreement was assessed using health insurance data as gold standard for the time period 2005 to 2010 from 8 participants. RESULTS: Participants reported a median of 7 lifetime X-ray examinations (interquartile range 4–13), and 42% (n = 83) reported having had a CT scan (2, IQR = 1–3). Women reported statistically significant more X-ray examinations than men. Individual frequencies above the 75th percentile (≥15 X-ray examinations) were predominantly observed among women and in individuals >50 years of age. The prospective exposure assessment yielded a 60% return-rate of X-ray cards (n = 58). 16 (28%) of the returned cards reported radiological examinations conducted during the 6-month period but generally lacked more detailed exposure information. X-ray examinations reported for the period for which health insurance data were available provided a moderately valid measure of individual medical radiation exposure. CONCLUSIONS: The assessment of more recent medical examinations seems in the German National Cohort study feasible, whereas lifetime medical radiation exposure appears difficult to assess via self-reports. Health insurance data may be a potentially useful tool for the assessment of individual data on medical radiation exposure both retrospectively and prospectively

    The effects of iodine blocking following nuclear accidents on thyroid cancer, hypothyroidism, and benign thyroid nodules: Design of a systematic review

    No full text
    BACKGROUND: One of the most efficient radiation protection methods to reduce the risk of adverse health outcomes in case of accidental radioactive iodine release is the administration of potassium iodine (KI). Although KI administration is recommended by WHO’s guidelines for iodine prophylaxis following nuclear accidents and is also widely implemented in most national guidelines, the scientific evidence for the guidelines lacks as the guidelines are mostly based on expert opinions and recommendations. Therefore, this study will provide evidence by systematically reviewing the effects of KI administration in case of accidental radioactive iodine release on thyroid cancer, hypothyroidism, and benign nodules. METHODS: We will apply standard systematic review methodology for the identification of eligible studies, data extraction, assessment of risk of biases, heterogeneity, and data synthesis. The electronic database search will be conducted in MEDLINE (via PubMed) and EMBASE, and covers three search blocks with terms related to the health condition, intervention, and occurrence/location. We have no date or language restrictions, but restrictions to humans only. We will include studies comparing the effects of KI administration on thyroid cancer, hypothyroidism, and benign thyroid nodules in a population exposed to radioactive iodine release. The quality of the studies will be graded. If feasible, a meta-analysis will be conducted. DISCUSSION: This proposed systematic review will update the existing WHO guideline from 1999. New evidence on the efficacy of KI administration to reduce thyroid cancer, hypothyroidism, and benign thyroid nodules in the event of an accidental release of radioactive iodine to the environment will provide the basis for an update of the WHO guideline for iodine prophylaxis following nuclear accidents

    Synchronisation and scaling properties of chaotic networks with multiple delays

    No full text
    We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LEs) in such systems possesses a hierarchical structure, with different parts scaling with the different delays. This leads to different types of chaos, depending on the scaling of the maximal LE. Our results are relevant, in particular, for the synchronisation properties of hierarchical networks (networks of networks) where the nodes of subnetworks are coupled with shorter delays and couplings between different subnetworks are realised with longer delay times. Units within a subnetwork can synchronise if the maximal exponent scales with the shorter delay, long-range synchronisation between different subnetworks is only possible if the maximal exponent scales with the longer delay. The results are illustrated analytically for Bernoulli maps and numerically for tent maps and semiconductor lasers

    Synchronisation and scaling properties of chaotic networks with multiple delays

    No full text
    We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LEs) in such systems possesses a hierarchical structure, with different parts scaling with the different delays. This leads to different types of chaos, depending on the scaling of the maximal LE. Our results are relevant, in particular, for the synchronisation properties of hierarchical networks (networks of networks) where the nodes of subnetworks are coupled with shorter delays and couplings between different subnetworks are realised with longer delay times. Units within a subnetwork can synchronise if the maximal exponent scales with the shorter delay, long-range synchronisation between different subnetworks is only possible if the maximal exponent scales with the longer delay. The results are illustrated analytically for Bernoulli maps and numerically for tent maps and semiconductor lasers. © Copyright EPLA, 2013.TJ acknowledges support by FEDER (EU) under the project FISICOS (FIS2007-60327). SY acknowledges support by the German Research Foundation in the framework of the Collaborative Research Center SFB 910.Peer Reviewe
    corecore