14 research outputs found

    Predicting spike activity in neuronal cultures

    No full text
    Neuronal cultures are small living networks in a closed system. This paper investigates the question whether it is possible to discover the functional connectivity and to model the dynamics of such neuronal cultures. Doing so may contribute to a better understanding of neural information processing. We employ a machine learning approach, which constructs the functional connectivity map of a neuronal culture based on multiple spike trains of its spontaneous activity recorded with Multi-Electrode-Array (MEA) technology. The spike train of an electrode is modeled as a point process, where the firing probability depends on the finite spike history of all electrodes. To capture potential plasticity of the network, we employ a gradient descent method, which naturally allows for online learning. Several experiments with different cultures show that learned models can predict upcoming spike activity quite well.status: publishe

    Predicting spike activity in neuronal cultures

    No full text
    Poster presentationstatus: publishe

    Network inhomogeneity supports burst initiation in vitro

    No full text

    Distinct Mechanisms for Visual and Motor-Related Astrocyte Responses in Mouse Visual Cortex

    No full text
    Astrocytes are a major cell type in the mammalian nervous system, are in close proximity to neurons, and show rich Ca2+ activity thought to mediate cellular outputs. Astrocytes show activity linked to sensory [1, 2] and motor [3, 4] events, reflecting local neural activity and brain-wide neuromodulatory inputs. Sensory responses are highly variable [5-10], which may reflect interactions between distinct input types [6, 7, 9]. However, the diversity of inputs generating astrocyte activity, particularly during sensory stimulation and behavior, is not fully understood [11, 12]. Using a combination of Ca2+ imaging, a treadmill assay, and visual stimulation, we examined the properties of astrocyte activity in mouse visual cortex associated with motor or sensory events. Consistent with previous work, motor activity activated astrocytes across the cortex with little specificity, reflecting a diffuse neuromodulatory mechanism. In contrast, moving visual stimuli generated specific activity patterns that reflected the stimulus' trajectory within the visual field, precisely as one would predict if astrocytes reported local neural activity. Visual responses depended strongly on behavioral state, with astrocytes showing high amplitude Ca2+ transients during locomotion and little activity during stillness. Furthermore, the amplitudes of visual responses were highly correlated with pupil size, suggesting a role of arousal. Interestingly, while depletion of cortical noradrenaline abolished locomotor responses, visual responses were only reduced in amplitude and their spatiotemporal organization remained intact, suggesting two distinct types of inputs underlie visual responses. We conclude that cortical astrocytes integrate local sensory information and behavioral state, suggesting a role in information processing.status: publishe
    corecore