74 research outputs found

    From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy

    Get PDF
    Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed

    Cost-Effective Organization of an Institutional Human Cancer Biobank in a Clinical Setting: CRO-Biobank Experience Toward Harmonization

    Get PDF
    This report describes the organization of the Biobank of the CRO Aviano National Cancer Institute, Aviano (CRO-Biobank), Italy, implemented as a structured facility dedicated to collecting human biological samples. It describes a particular disease-specific biobank and the integration of a research biobank in a clinical setting. The CRO-Biobank's mission is rooted in supporting and implementing cancer research, with its main focus on optimizing technical and quality processes, while also investigating ethical, legal and IT topics.The CRO-Biobank has implemented processes aimed at guaranteeing the safety of the providers, protecting patient privacy and ensuring both the traceability and quality of its samples. Our 8 years of experience allow us to offer insights and useful suggestions that may solve theoretical and practical issues that can arise when starting up new biobanks or developing existing biobanks further

    the metabolomic scent of cancer disease progression in soft tissue sarcoma a case report

    Get PDF
    Background: The purpose of this case report is to describe the potential that metabolomics breath analysis may have in cancer disease monitoring. The advances in mass spectrometry instrumentation allow the accurate real-time analysis of volatile metabolites exhaled in the breath. The application of such non-invasive devices may provide innovative and complementary monitoring of the physio-pathological conditions of cancer patients. Case presentation: A 59-year-old Caucasian woman with spindle cell malignant mesenchymal sarcoma of the presacral region started a first-line therapy with non-pegylated liposomal doxorubicin and ifosfamide associated with pelvic radiant treatment. After two cycles of chemotherapy plus radiotherapy, a significant pulmonary disease progression was reported. Thus, a second-line therapy with trabectedin was administered. However, after only two cycles of treatment a re-staging computed tomography scan reported further cancer disease progression of the target pulmonary lesions as well as occurrence of new satellite bilateral nodules. Real-time analysis of breath exhaled volatile organic compounds, performed by select ion flow tube mass spectrometry (SIFT-MS) during the follow-up of the patient, showed a specific metabolic pattern not observed in the breath of other soft tissue sarcoma patients who achieved clinical benefit from the treatments. Conclusions: This case report revealed the importance of the non-invasive real-time volatile organic compounds breath analysis to distinguish individual specific chemo-resistance phenotypes among soft tissue sarcoma patients. Such observation seems to suggest that breath metabolomics may be particularly useful for monitoring cancer disease progression in soft tissue sarcoma patients where only cost-effective diagnostic tools, such as positron emission tomography and computed tomography, are available

    Drafting Biological Material Transfer Agreement: A Ready-To-Sign Model for Biobanks and Biorepositories

    Get PDF
    Purpose: Due to the scarcity of publications, guidelines, and harmonization among national regulations, biobanks and institutions face practical and theoretical issues when drafting a material transfer agreement (MTA), the fundamental tool to regulate the successful exchange of biosamples and information. Frequently researchers do not execute MTAs because of a general lack of knowledge about this topic. It is thus critical to develop new models to prevent loss of traceability and opportunities both for researchers and biobanks, their exposure to various risks, and delays in transferring biomaterials.Methods: Through the involvement of institutional groups and professionals with multidisciplinary expertise, we have drawn up a ready-to-sign MTA for the CRO-Biobank (the biobank of the National Cancer Institute, CRO, Aviano), a standardized template that can be employed as a ready-to-use model agreement.Results: The team identified the essential components to be included in the MTA, which comprise i) permissions, liability and representations; ii) custodianship and distribution limitations; iii) appropriate use of materials, including biosafety concerns; iv) confidentiality, non-disclosure, and publications; v) intellectual property protection for both the provider and recipient.Conclusions: This paper aims to be an unabridged report (among the few works in the existing literature) providing a description of the whole process related to the formation of an MTA. Biobanks and institutions may consider adopting our ready-to-sign form as a standard model. The article discusses the most important issues tackled during the drafting of the document, thus proposing an operative approach for other institutions that face the same problems

    SERS analysis of serum for detection of early and locally advanced breast cancer

    Get PDF
    n this contribution, we investigated whether surface-enhanced Raman scattering (SERS) of serum can be a candidate method for detecting \u201cluminal A\u201d breast cancer (BC) at different stages. We selected three groups of participants aged over 50 years: 20 healthy women, 20 women with early localized small BC, and 20 women affected by BC with lymph node involvement. SERS revealed clear spectral differences between these three groups. A predictive model using principal component analysis (PCA) and linear discriminant analysis (LDA) was developed based on spectral data, and its performance was estimated with cross-validation. PCA-LDA of SERS spectra could distinguish healthy from BC subjects (sensitivity, 92 %; specificity, 85 %), as well as subjects with BC at different stages, with a promising diagnostic performance (sensitivity and specificity, 6580 %; overall accuracy, 84 %). Our data suggest that SERS spectroscopy of serum, combined with multivariate data analysis, represents a minimally invasive, easy to use, and fast approach to discriminate healthy from BC subjects and even to distinguish BC at different clinical stages

    Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study

    Get PDF
    Surface-enhanced Raman scattering (SERS) spectra were obtained from urine samples from subjects diagnosed with prostate cancer as well as from healthy controls, using Au nanoparticles as substrates. Principal component analysis (PCA) of the spectral data, followed by linear discriminant analysis (LDA), leads to a classification model with a sensitivity of 100 %, a specificity of 89 %, and an overall diagnostic accuracy of 95 %. Even considering the very limited number of samples involved in this report, preliminary results from this approach are extremely promising, encouraging further investigation

    Carcinogenesis and Metastasis in Liver: Cell Physiological Basis

    Get PDF
    Hepatocellular carcinoma (HCC) incidence is rising. This paper summarises the current state of knowledge and recent discoveries in the cellular and physiological mechanisms leading to the development of liver cancer, especially HCC, and liver metastases. After reviewing normal hepatic cytoarchitecture and immunological characteristics, the paper addresses the pathophysiological factors that cause liver damage and predispose to neoplasia. Particular attention is given to chronic liver diseases, metabolic syndrome and the impact of altered gut microbiota, disrupted circadian rhythm and psychological stress. Improved knowledge of the multifactorial aetiology of HCC has important implications for the prevention and treatment of this cancer and of liver metastases in general

    Radiation recall dermatitis induced by COVID-19 vaccination in breast cancer patients treated with postoperative radiation therapy

    Full text link
    Background: and purpose: Radiation recall dermatitis is an adverse event predominantly due to systemic therapy administration after a previous radiation therapy course. Few case reports describe radiation recall dermatitis in breast cancer patients treated with postoperative radiation therapy following COVID-19 vaccination. In this study we investigated the incidence and severity of radiation recall dermatitis after COVID-19 vaccination in irradiated breast cancer patients. Methods: Patients that received at least one COVID-19 vaccination dose during the year after the end of postoperative breast radiation therapy were included in this observational monocentric study. Local symptoms occurring inside the radiation field after vaccination were patient-reported and scored according to the PRO-CTCAE questionnaire. Descriptive data of radiation recall dermatitis incidence and severity, and potential risk factors were evaluated. Results: A cohort of 361 patients with 756 administered COVID-19 vaccinations was analyzed. Breast symptoms were reported by 7.5% of patients, while radiation recall dermatitis was considered for 5.5%. The incidence of radiation recall dermatitis per single dose of vaccine was 2.6%, with a higher risk for the first dose compared to the second/third (4.4% vs 1%, p = 0.003), especially when administered within the first month after the end of irradiation (12.5% vs 2.2%, p = 0.0004). Local symptoms were generally self-limited and a few cases required anti-inflammatory drugs. Conclusions: Radiation recall dermatitis is an uncommon but not rare phenomenon in breast cancer patients that received COVID-19 vaccination within one year after breast irradiation. However, symptoms severity were generally low/mild and reversible. These findings can be useful for patient counseling

    Assessment of the mutational status of NSCLC using hypermetabolic circulating tumor cells

    Get PDF
    Molecular characterization is currently a key step in NSCLC therapy selection. Circulating tumor cells (CTC) are excellent candidates for downstream analysis, but technology is still lagging behind. In this work, we show that the mutational status of NSCLC can be assessed on hypermetabolic CTC, detected by their increased glucose uptake. We validated the method in 30 Stage IV NSCLC patients: peripheral blood samples were incubated with a fluorescent glucose analog (2-NBDG) and analyzed by flow cytometry. Cells with the highest glucose uptake were sorted out. EGFR and KRAS mutations were detected by ddPCR. In sorted cells, mutated DNA was found in 85% of patients, finding an exact match with primary tumor in 70% of cases. Interestingly, in two patients multiple KRAS mutations were detected. Two patients displayed different mutations with respect to the primary tumor, and in two out of the four patients with a wild type primary tumor, new mutations were highlighted: EGFR p.746_750del and KRAS p.G12V. Hypermetabolic CTC can be enriched without the need of dedicated equipment and their mutational status can successfully be assessed by ddPCR. Finally, the finding of new mutations supports the possibility of probing tumor heterogeneity
    corecore