5 research outputs found
PhyreStorm: A Web Server for Fast Structural Searches Against the PDB
AbstractThe identification of structurally similar proteins can provide a range of biological insights, and accordingly, the alignment of a query protein to a database of experimentally determined protein structures is a technique commonly used in the fields of structural and evolutionary biology. The PhyreStorm Web server has been designed to provide comprehensive, up-to-date and rapid structural comparisons against the Protein Data Bank (PDB) combined with a rich and intuitive user interface. It is intended that this facility will enable biologists inexpert in bioinformatics access to a powerful tool for exploring protein structure relationships beyond what can be achieved by sequence analysis alone. By partitioning the PDB into similar structures, PhyreStorm is able to quickly discard the majority of structures that cannot possibly align well to a query protein, reducing the number of alignments required by an order of magnitude. PhyreStorm is capable of finding 93±2% of all highly similar (TM-score>0.7) structures in the PDB for each query structure, usually in less than 60s. PhyreStorm is available at http://www.sbg.bio.ic.ac.uk/phyrestorm/
The Phyre2 web portal for protein modeling, prediction and analysis
Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission
Development of novel strategies for template-based protein structure prediction
The most successful methods for predicting the structure of a protein from its sequence rely on identifying homologous sequences with a known structure and building a model from these structures. A key component of these homology modelling pipelines is a model combination method, responsible for combining homologous structures into a coherent whole.
Presented in this thesis is poing2, a model combination method using physics-, knowledge- and template-based constraints to assemble proteins using information from known structures. By combining intrinsic bond length, angle and torsional constraints with long- and short-range information extracted from template structures, poing2 assembles simplified protein models using molecular dynamics algorithms. Compared to the widely-used model combination tool MODELLER, poing2 is able to assemble models of approximately equal quality. When supplied only with poor quality templates or templates that do not cover the majority of the query sequence, poing2 significantly outperforms MODELLER.
Additionally presented in this work is PhyreStorm, a tool for quickly and accurately aligning the three-dimensional structure of a query protein with the Protein Data Bank (PDB). The PhyreStorm web server provides comprehensive, current and rapid structural comparisons to the protein data bank, providing researchers with another tool from which a range of biological insights may be drawn. By partitioning the PDB into clusters of similar structures and performing an initial alignment to the representatives of each cluster, PhyreStorm is able to quickly determine which structures should be excluded from the alignment. For a benchmarking set of 100 proteins of diverse structure, PhyreStorm is capable of finding over 90% of all high-scoring structures in the PDB, and over 80% of all structures of moderate alignment score.Open Acces
PhyreRisk: A Dynamic Web Application to Bridge Genomics, Proteomics and 3D Structural Data to Guide Interpretation of Human Genetic Variants
This work is licensed under a Creative Commons Attribution 4.0 International License.PhyreRisk is an open-access, publicly accessible web application for interactively bridging genomic, proteomic and structural data facilitating the mapping of human variants onto protein structures. A major advance over other tools for sequence-structure variant mapping is that PhyreRisk provides information on 20,214 human canonical proteins and an additional 22,271 alternative protein sequences (isoforms). Specifically, PhyreRisk provides structural coverage (partial or complete) for 70% (14,035 of 20,214 canonical proteins) of the human proteome, by storing 18,874 experimental structures and 84,818 pre-built models of canonical proteins and their isoforms generated using our in house Phyre2. PhyreRisk reports 55,732 experimentally, multi-validated protein interactions from IntAct and 24,260 experimental structures of protein complexes.
Another major feature of PhyreRisk is that, rather than presenting a limited set of precomputed variant-structure mapping of known genetic variants, it allows the user to explore novel variants using, as input, genomic coordinates formats (Ensembl, VCF, reference SNP ID and HGVS notations) and Human Build GRCh37 and GRCh38. PhyreRisk also supports mapping variants using amino acid coordinates and searching for genes or proteins of interest.
PhyreRisk is designed to empower researchers to translate genetic data into protein structural information, thereby providing a more comprehensive appreciation of the functional impact of variants. PhyreRisk is freely available at http://phyrerisk.bc.ic.ac.ukWellcome Trust 104955/Z/14/ZWellcome Trust PhD studentship 108908/B/15/ZBBSRC BB/M011526/1BBSRC BB/P011705/1NSF DBI1565107NIH R01GM07425