2 research outputs found

    DataSheet1_Versatile electrical stimulator for cardiac tissue engineering—Investigation of charge-balanced monophasic and biphasic electrical stimulations.pdf

    No full text
    The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.</p

    AIM (Artery In Microgravity): An ICE Cubes Mission by University Students

    Get PDF
    The ICE Cubes Facility is a capable experiment platform on board the Columbus Module of the International Space Station that offers flexibility to host many different experiments. The ICE Cubes Facility is suited for any scientific research and technological demonstrator that requires the study of the effects of microgravity and radiation exposure in a pressurised volume. The ICE Cube Service is also open to different schooling levels (primary, secondary, universities) and to different STEAM curricula and offers University students (Master and PhD) the opportunity to design, develop, test and operate a real experiment for the ISS under the supervision of experts from the ICE Cube Service.The Artery In Microgravity (AIM) project is a 2U ICE Cubes experiment cube and the first experiment to be selected for the Orbit Your Thesis! programme of ESA Academy. The cube is expected to be launched on SpaceX-20 in early 2020. The project is being developed by an international group of students from ISAE-Supaero and Politecnico di Torino. The experiment will investigate coronary heart disease, the most common form of cardiovascular disease and the cause of approximately 9 million deaths every year. In view of the very long duration missions to come, such diseases may also affect healthy astronauts in space. The AIM cube is a test-bench for investigating haemodynamics in microgravity and will study the effects of microgravity on blood flow in the coronary artery with and without an implanted coronary stent and the impact of augmented radiation levels on metallic ion release from coronary stents.The experimental setup consists of a closed hydraulic loop containing two models of a coronary artery in series. An electric pump and reservoir will control the flow of a blood-mimicking fluid through the system. One model of the coronary artery will contain a coronary stent. The pressure of the fluid will be studied along its path using a series of pressure sensors and a camera will visualise the flow. Ground tests will be conducted concurrently in order to perform a comparison between the on-ground behaviour and the behaviour in microgravity.The paper will showcase the design and development of the AIM experiment cube, the results of testing and the educational applications of theICE Cubes Facility. The full data and results will be available after the completion of the mission which is expected to be between March and June 2020
    corecore