55 research outputs found

    Cell Size Control And Asymmetric Cell Fates In Start Of The Saccharomyces cerevisiae Cell Cycle

    Get PDF
    Understanding the molecular and biophysical mechanisms that couple the process of cell growth to cell division is one of the major challenges of modern cell biology. Saccharomyces cerevisiae (budding yeast) has been an important model organism to study the coupling between cell growth and cell division. The insights obtained from studies of this unicellular organism have been pivotal for related studies in animal systems. The classical picture that emerged from studies in budding yeast was that cell cycle commitment in G1, at a point called Start, requires growth to a critical cell size. This deterministic model did not address how cell size control can be achieved despite the stochasticity of elementary cellular processes. Furthermore, no clear connection between the commitment at Start and the molecular network controlling the G1/S transition was known. We developed a novel framework for analyzing the precision of cell size control, by combining single-cell time-lapse imaging of fluorescently labeled cells and rigorous mathematical analysis. This allowed us to quantify the contributions of size control and molecular noise to temporal variability of the G1 phase. Comparing wild-type and mutant strains bearing multiple fluorescent cell cycle markers, we found that Start regulatory dynamics can be decomposed into a size sensing module and a completely independent timing module. We identified inactivation of the Whi5 repressor as marking the boundary between the two modules and showed that different G1 cyclins, CLN3 vs. CLN1 and CLN2, control the two modules. We also showed how positive feedback of G1 cyclins CLN1 and CLN2 on their own transcription ensures a fast transition between the two modules and a coherent commitment to cell cycle progression. Difference in cell size at birth is not the only determinant of the differential regulation of Start between mother and daughter cell. Using single-cell analysis, microarrays and chromatin immuno-precipitations we have shown that cell-type specific difference in regulation of Start is also due to regulation of the G1 cyclin CLN3 by daughter-specific transcription factors Ace2 and Ash1. This work demonstrates how asymmetric localization of cell-fate determinants results in cell-type-specific regulation of the cell cycle in budding yeast

    Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst

    Get PDF
    SummaryThe pluripotent epiblast (EPI) is the founder tissue of almost all somatic cells. EPI and primitive endoderm (PrE) progenitors arise from the inner cell mass (ICM) of the blastocyst-stage embryo. The EPI lineage is distinctly identified by its expression of pluripotency-associated factors. Many of these factors have been reported to exhibit dynamic fluctuations of expression in embryonic stem cell cultures. Whether these fluctuations correlating with ICM fate choice occur in vivo remains an open question. Using single-cell resolution quantitative imaging of a Nanog transcriptional reporter, we noted an irreversible commitment to EPI/PrE lineages in vivo. A period of apoptosis occurred concomitantly with ICM cell-fate choice, followed by a burst of EPI-specific cell proliferation. Transitions were occasionally observed from PrE-to-EPI, but not vice versa, suggesting that they might be regulated and not stochastic. We propose that the rapid timescale of early mammalian embryonic development prevents fluctuations in cell fate

    GATA6 Levels Modulate Primitive Endoderm Cell Fate Choice and Timing in the Mouse Blastocyst

    Get PDF
    SummaryCells of the inner cell mass (ICM) of the mouse blastocyst differentiate into the pluripotent epiblast or the primitive endoderm (PrE), marked by the transcription factors NANOG and GATA6, respectively. To investigate the mechanistic regulation of this process, we applied an unbiased, quantitative, single-cell-resolution image analysis pipeline to analyze embryos lacking or exhibiting reduced levels of GATA6. We find that Gata6 mutants exhibit a complete absence of PrE and demonstrate that GATA6 levels regulate the timing and speed of lineage commitment within the ICM. Furthermore, we show that GATA6 is necessary for PrE specification by FGF signaling and propose a model where interactions between NANOG, GATA6, and the FGF/ERK pathway determine ICM cell fate. This study provides a framework for quantitative analyses of mammalian embryos and establishes GATA6 as a nodal point in the gene regulatory network driving ICM lineage specification

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking

    Enhancement of Transport Selectivity through Nano-Channels by Non-Specific Competition

    Get PDF
    The functioning of living cells requires efficient and selective transport of materials into and out of the cell, and between different cellular compartments. Much of this transport occurs through nano-scale channels that do not require large scale molecular re-arrangements (such as transition from a ‘closed’ to an ‘open’ state) and do not require a direct input of metabolic energy during transport. Nevertheless, these ‘always open’ channels are highly selective and pass only their cognate molecules, while efficiently excluding all others; indeed, these channels can efficiently transport specific molecules even in the presence of a vast excess of non-specific molecules. Such biological transporters have inspired the creation of artificial nano-channels. These channels can be used as nano-molecular sorters, and can also serve as testbeds for examining modes of biological transport. In this paper, we propose a simple kinetic mechanism that explains how the selectivity of such ‘always open’ channels can be based on the exclusion of non-specific molecules by specific ones, due to the competition for limited space inside the channel. The predictions of the theory account for the behavior of the nuclear pore complex and of artificial nanopores that mimic its function. This theory provides the basis for future work aimed at understanding the selectivity of various biological transport phenomena

    Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis

    Get PDF
    We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation
    • 

    corecore