827 research outputs found

    Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice

    Get PDF
    Diabetic patients suffer from a high rate of cardiovascular events and such risk increases with HbA1c. However, lowering HbA1c does not appear to yield the same benefit on macrovascular endpoints, as observed for microvascular endpoints. As the number of glucose-lowering medications increases, clinicians have to consider several open questions in the management of type 2 diabetes, one of which is the cardiovascular risk profile of each regimen. Recent placebo-controlled cardiovascular outcome trials (CVOTs) have responded to some of these questions, but careful interpretation is needed. After general disappointment around CVOTs assessing safety of DPP-4 inhibitors (SAVOR, TECOS, EXAMINE) and the GLP-1 receptor agonist lixisenatide (ELIXA), the EMPA-REG Outcome trial and the LEADER trial have shown superiority of the SGLT2-I empagliflozin and the GLP-1RA liraglutide, respectively, on the 3-point MACE outcome (cardiovascular death, non-fatal myocardial infarction or stroke) and cardiovascular, as well as all-cause mortality. While available mechanistic studies largely support a cardioprotective effect of GLP-1, the ability of SGLT2 inhibitor(s) to prevent cardiovascular death was unexpected and deserves future investigation. We herein review the results of completed CVOTs of glucose-lowering medications and suggest a possible treatment algorithm based on cardiac and renal co-morbidities to translate CVOT findings into clinical practice

    Aberration cancellation in quantum interferometry

    Full text link
    We report the first experimental demonstration of even-order aberration cancellation in quantum interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation, which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the multi-parameter spatial-spectral entanglement. Spatially-entangled photons, generated by spontaneous parametric down conversion, were subjected to spatial aberrations introduced by a deformable mirror that modulates the wavefront. We show that only odd-order spatial aberrations affect the quality of quantum interference

    Spinning Pupil Aberration Measurement for anisoplanatic deconvolution

    Get PDF
    The aberrations in an optical microscope are commonly measured and corrected at one location in the field of view, within the so-called isoplanatic patch. Full-field correction is desirable for high-resolution imaging of large specimens. Here we present a novel wavefront detector, based on pupil sampling with sub-apertures, which measures the aberrated wavefront phase at each position of the specimen. Based on this measurement, we propose a region-wise deconvolution that provides an anisoplanatic reconstruction of the sample image. Our results indicate that the measurement and correction of the aberrations can be performed in a wide-field fluorescence microscope over its entire field of view.Comment: 5 pages, 4 figure
    • …
    corecore