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"Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment 1	

optimization?"	2	

 3	

Abstract  4	

Introduction 5	

WHO global strategy is to end TB epidemic by 2035.  Pharmacokinetic and pharmacogenetic 6	

studies are widely spreading and might confirm their potential role in optimizing treatment outcome 7	

in specific settings. Insufficient drug exposure seems to be a relevant factor for tuberculosis 8	

outcome and for the risk of emergence of phenotipic resistance. 9	

Areas Covered 10	

This review will report available pharmacokinetic and pharmacogenetic data of first and second-11	

line antituberculars relating to efficacy and toxicity. Pharmacodinamic implications of optimized 12	

drugs are discussed. A specific session describes innovative investigations on drug penetration in 13	

lesions.  14	

Expert Opinion 15	

The optimal use of available antitubercular drugs is paramount for tuberculosis control and 16	

eradication. Waiting for the results of ongoing trials higher RIF doses should be reserved to those 17	

with tubercular meningitis. TDM using limiting sampling strategies, is suggested in patients at risk 18	

of failure and in those subjects with slow response to treatment. Further studies are needed in order 19	

to provide definitive recommendations of pharmacogenetic-based individualization: however lower 20	

INH doses in NAT2 slow acetilators and higher RIF doses in those presenting SLCO1B1 loss of 21	

function genes are promising strategies. Data on tissue drug penetration are needed as well as 22	

pharmacological modelling in order to inform tailored strategies. 23	

 24	

Keywords: Tuberculosis, SLCO1B1, high-dose rifampicin, lesion penetration, therapeutic drug 25	

monitoring, acetylator status. 26	
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Abbreviations: RIF, rifampicin, RFB, rifabutin; RPT, rifapentine; INH, isoniazid; ETB, 1	

ethambutol; PZA, pyrazinamide; AUC Area Under the Curve; PK, pharmacokinetics; PD, 2	

pharmacodinamics; Cmax maximal concentration, TDM, Therapeutic Drug Monitoring. 3	

 4	

Article highlights 5	

• Inter- and intraindividual variability in the pharmacokinetics of antitubercular agents might 6	

be involved in explaining high variability of response, the likelihood of drugs’ 7	

underexposure, the high prevalence of drug-related toxicity and the selection of multi-8	

resistant strains.  9	

• Actual rifampicin dose is suboptimal and trials investigating increased dose are ongoing. 10	

Potential effect of pyrazinamide in shortening treatment duration due to its great sterilizing 11	

activity is encouraging in designing new regimens after the failure of trials with 12	

fluoroquinolones. 13	

• Pharmacogenetic studies observed an association between SLCO1B1 genetic polimorphism 14	

(rs4149032) and reduced rifampicin concentrations. A NAT2-guided trial reported less 15	

isoniazid related liver injury and treatment failures. 16	

• Drugs penetration in lesions and intracellular may contribute to treatment outcome for the 17	

relation with incidence of relapse or the development of phenotipic drug resistance. 18	

• New regimens with new and optimized drugs are dramatically needed focusing on safety, 19	

efficacy and PK/PD characteristics of drugs; research on pharmacokinetics in special 20	

populations are warranted to better define individualized treatment approach. 21	

 22	

 23	

1. Introduction  24	

Tuberculosis (TB) with 9.6 million new cases is a worldwide leading infection and is responsible 25	

for approximately 1.5 million deaths in 2014[1].   26	
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The goal of reversing TB epidemic has been reached by 2015; currently, WHO has built up a 1	

strategy to end the global epidemic by 2035 with targets to reduce TB deaths by 95%, cut new cases 2	

by 90% between 2015 and 2035, and to ensure that no family is burdened with catastrophic costs 3	

due to TB[2].  4	

Combining several antitubercular drugs (ATDs) is a milestone in TB treatment[3].  5	

This approach is due to the hypothesis of existing bacterial subpopulations with different drug 6	

susceptibility: a first subpopulation of extracellular and rapidly dividing mycobacteria early killed 7	

by therapy, a second subpopulation with an intermediate grade of replication residing in 8	

fagolisosomes and, possibly, a third subpopulation consisted of dormant and persister mycobacteria 9	

in monocyte-macrophagic cells and in caseum lesions[4]. Conversely, a second hypothesis 10	

considers this latter population having the same drug susceptibility as the others and being the cause 11	

of persistent disease, due to the fact that the mycobacteria are here sequestered in thick-walled 12	

granuloma where ATDs hardly penetrate. 13	

 14	

Therefore the activity of a multidrug regimen with specific characteristics of each component 15	

ensures a fast bactericidal effect followed by a sterilizing effect to prevent relapse and selection of 16	

drug resistance. Although the current TB regimen is effective with 95% of cure rate (in drug 17	

susceptible TB under optimal condition), there are still many undefined issues such as the high 18	

variability of response, the likelihood of drugs underexposure, the high prevalence of drug-related 19	

toxicity and the selection of multi-resistant strains. The lack of early biomarkers for predicting 20	

treatment efficacy, cure and identification of patients requiring prolonged treatment increased 21	

complexity to this challenging subject[5]. Moreover the current pipeline is insufficient to tackle the 22	

emergent issue of MDR/XDR TB (multidrug-resistant and extensively-drug resistant TB) issue[6]. 23	

After 40 years of no ATDs development, bedaquiline and delamanid have received accelerated 24	

regulatory approval bringing some advance in treatment of resistant strains and some other 25	

compounds are under study. 26	
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Interindividual variability in the pharmacokinetics (PK) of ATDs might be involved in explaining 1	

such variability and has been identified as a key factor for the sterilizing effect and for the selection 2	

of phenotipc resistance. Low maximum plasma concentrations have been associated with treatment 3	

failure, relapse and acquired drug resistance regardless of HIV status; dose-adjustments after drug 4	

monitoring has been related to better clinical outcomes[7,8]. Pharmacogenetics (PG) is the study of 5	

interindividual variation in DNA sequences related to drug methabolic pathways. Inter-individual 6	

variability, tissue penetration and drug-to-drug interactions are partially explained by genetic 7	

variants in gene encoding for metabolizing or transporting proteins: knowing patients’ genetic asset 8	

may pave the way to tailored treatment. 9	

Repurposing existing drugs and exploring new regimens, different doses, dosing schedules and 10	

route of administration seem a productive tool to possibly shorten treatment in drug susceptible and 11	

improve outcome in MDR tuberculosis.[9] Preliminary studies and evidence in selected 12	

extrapulmonary disease point out that higher rifampicin (RIF) doses may be safe and increase 13	

treatment efficacy[10]. 14	

Aim of the following review is to provide an insight in clinical pharmacokinetics and 15	

pharmacogenetics of ATDs and to discuss warranted studies in this field. 16	

 17	

 18	

2.1 Methods 19	

Articles cited in this review were obtained through searches of the electronic database MEDLINE 20	

up to 15th December 2016, meeting abstract databases and reference lists from key reviews. Search 21	

terms included “tuberculosis”, “antitubercular”, “pharmacokinetics”, “pharmacogenetics” and 22	

“SNPs”. Priority was given to primary research publications. The search was limited to English, but 23	

was not restricted by date. 24	

 25	

2.2 Combination of antitubercular treatment 
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 1	

International guidelines recommend for drug-susceptible TB the association of RIF, isoniazid 2	

(INH), ethambutol (ETB) and pyrazinamide (PZA) for two months followed by four months of RIF 3	

and INH.  4	

For MDR treatment anti-TB drugs are grouped according to efficacy and drug class. New 5	

regrouping has been published in the WHO’s 2016 update .  Group A are fluoroquinolones (FQ, 6	

levofloxacin, moxifloxacin and gatifloxacin) and group B are injectable drugs (amikacin, 7	

capreomycin, kanamycin). Other core second-line agents, in order of preference are 8	

ethionamide/prothionamide, cycloserine/terizidone, linezolid and clofazimine. Add-on agents were 9	

split in three different subgroups: D1 includes pyrazinamide, ethambutol and high-dose isoniazid 10	

(15-20 mg/kg); D2 consists of bedaquiline and delamanid; D3 is made up of p-aminosalicylic acid 11	

(PAS), imipenem-cilastatin, meropenem, clavulanate and thioacetazone[11].  12	

Bedaquiline, delamanid and another new compound pretomanid (PA-824) are in clinical Phase 3 13	

and when the results will be available these new drugs will be re-evaluated to design the core MDR-14	

TB regimen (STAND phase 3 trial testing the efficacy, safety and tolerability of moxifloxacin, 15	

pretomanid and PZA is presently on clinical hold)[12]. In patients with RIF-resistant or mutidrug-16	

resistant TB, a conventional regimen with at least five effective TB medicines during the intensive 17	

phase is recommended, including PZA and one drug chosen from group A, one from group B and at 18	

least two from group C (PZA+A1 +B1+C2); if the minimum number of effective drugs is not 19	

reached an agent from group D2 and others from group D3 may be added to bring the total to five 20	

active agents. An intensive phase of 8 months is suggested for most patients and the total duration 21	

should be modified according to patients’ response: new patients need to be treated for 20 22	

months.[13] A shorter MDR-TB regimen (9-12 months) may be used in patients previously 23	

untreated with second-line drugs without resistance to FQ and second line injectable agents: 24	

detailed information can be found in WHO treatment guidelines for drug-resistant tuberculosis, 25	

2016 update.[11] 26	
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2.3 Pharmacokinetics of ATDs and efficacy 1	

 2	

Pharmacokinetic and pharmacodinamic (PD) properties of first, second-line and novel drugs are 3	

resumed in Table 1, 2 and 3. First-line anti tuberculars and FQ show concentration-dependent 4	

killing and have a long post antibiotic effect. AUC/MIC (where AUC is the area under the 5	

concentration-time curve of a drug) is the best PD parameter to predict the activity. For RIF, 6	

maximal concentration (Cmax) shows a good correlation with AUC and it is often used as a 7	

surrogate of the latter[14–16]. Gumbo et al. suggested that AUC/MIC is the PK/PD parameter most 8	

associated with bactericidal activity, while Cmax/MIC is associated with the prevention of resistance 9	

selection[17]. 10	

Studies have highlighted the importance of ATDs concentrations on the rate of kill of M. 11	

tuberculosis in hollow fiber systems[17], animal models[18] and patients[19].  12	

Few clinical studies have prospectively shown the association between plasma drug concentrations 13	

and outcome and results are heterogeneous. Pasipanodya[20] found that the three best predictors of 14	

poor long term outcome were: PZA 24-hour AUC≤363 mg*h/L, RIF AUC≤13 mg*h/L, and INH 15	

AUC≤52 mg*h/L. Moreover low RIF and INH Cmax and AUC preceded all cases of acquired drug 16	

resistance. Burhan[21] investigated the relation between plasma concentrations of RIF, INH, PZA 17	

and culture results. Even if drug concentrations were below the reference values no relationship 18	

between post-dose concentration and culture conversion at 8 weeks was recorded. A post-hoc 19	

analysis showed that patients with low PZA levels and extensive lung lesions were at risk of one 20	

positive culture at week 4, 8 or 24/32. Similar result was obtained by Chideya[22] that found that a 21	

low PZA Cmax was associated with worse outcomes in 255 TB patients from Botswana (where 69% 22	

were HIV coinfected). A Danish small prospective study on 32 patients showed that 2h post-dose 23	

RIF and INH plasma concentrations were below the recommended ranges in the majority of 24	

patients and therapy failure occured more frequently when RIF and INH concentrations were both 25	

below the normal ranges[23] A critical issue for predicting treatment outcome may be the number 26	
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of concomitantly underdosed drugs as reported in a few observations.20,23 Conversely, a 1	

retrospective report on 17 Swiss patients[24], showed that despite low plasma concentrations the 2	

outcome was good in the whole small sample. 3	

While the ATDS’ sinergistic effect is well known, an innovative study described the impact of PK 4	

on the sterilizing activity of the multidrug regimen[15]. The results showed that RIF Cmax >8.2 5	

mg/L and PZA AUC/MIC >11.3 interacted positively on sterilizing activity (measured as Beta-6	

slope of decline of bacillary burden in the sputum). In patients with RIF AUC<35.4 mg*h/L an 7	

increase in PZA AUC/MIC and/or ETB Cmax/MIC increased the beta-slope. On the other hand an 8	

increase in INH Cmax decreased the sterilizing activity. This apparent antagonist effect of INH on 9	

activity of RIF is consistent with previous studies on hollow fiber system where short interval 10	

between administration of RIF and INH resulted in lower bactericidal and sterilizing effects[25].  11	

Jindani[4], conversely, found that ETB had a sterilizing effect but it was judged to be antagonistic 12	

to RIF’s one: a possible explanation could be that ETB may increase treatment sterilizing effect in 13	

patients with low RIF concentrations. At a higher RIF exposure, the effect of ETB is masked by the 14	

higher sterilizing effect of RIF, so that the overall effect is less than that of adding the effects of two 15	

drugs, manifesting as apparent antagonism.  16	

 17	

A high inter- and intrapatient variability in drug serum concentrations have been often observed and 18	

further complicate the interpretation of PK results.  19	

Therapeutic drug monitoring (TDM) might be a useful tool and dose-optimization has proved to be 20	

beneficial in small non-controlled studies.  21	

The proposed therapeutic ranges of plasma Cmax, normally used as reference[26], are based on 22	

concentrations achieved by standard doses in healthy volunteers in controlled phase I studies and 23	

assumed to be effective in patients.  24	

Data from real world report an improved outcome performing TDM in daily practice[7,8]. Low 25	

plasma concentrations seems related to drug-drug  interactions (DDIs), use of fixed coformulations, 26	
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malnutrition, diabetes and coinfections[27–29].  1	

New methods for performing TDM are promising to implement sample collection in remote areas 2	

and to overcome technical issues (including the need for cold chain for storing samples). 3	

One of these methods is the use of dried blood and plasma spots (DBSs/DPSs). They require a 4	

smaller blood volume than conventional venous blood sampling. These devices can be shipped at 5	

room temperature[30]. 6	

Regarding antitubercular drugs, limited data have been published. Assays with DPSs for RIF[31], 7	

RPT and several second line drugs have been developed.[32] To our knowledge, PZA and INH 8	

methods have been developed by Allanson et al: technical issues due to incomplete stability were 9	

reported for INH.[33]  10	

Although AUC/MIC is the most reliable PD paramether for ATDs, estimating AUC needs several 11	

samples and limited samples strategies (LSS) have been developed to determine what sampling 12	

time is most informative of the AUC. In the past, collection at 2 hours captured Cmax and the 6-hour 13	

sample distinguished between delayed absorption and malabsorption[34].  Population 14	

pharmacokinetic models predicted AUC from 0 to 24 hours with optimal sampling at time points 1, 15	

3, 8 hours post-dose for RIF and 2, 6 (with also good estimation of Cmax) hours post-dose for 16	

levofloxacin and 1, 4 hours post-dose for amikacin and kanamycin, respectively[35–37]. 17	

 18	

 19	

2.4 First-line drugs characteristics and PK/PD relationships  (see Table 1) 20	

 21	

2.4.1 Rifampicin (RIF) 22	

RIF is a key sterilizing drug in the treatment of tuberculosis with relatively low early 23	

bactericidal activity usually administered at 8-12 mg/kg. RIF blocks the transcription 24	

inhibiting the bacterial DNA-dependent RNA polymerase. Mutations in the rpoB gene that 25	
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codes for the beta-subunit of the RNA plymerase are responsible for resistance to RIF. The 1	

MIC of RIF is 0.15-0.5 µg/mL. 2	

It is metabolized by a liver esterase (arylacetamide deacetylase) and is a potent inducer of 3	

PXR-mediated pathways, increasing its own and other compounds’ clearance. Auto-4	

induction has been reported to take about a week and full induction takes about three to four 5	

weeks[38]. This causes a decline in the AUC and terminal half-life over the first weeks of 6	

administration. The best size predictor for RIF clearance is fat-free mass instead of total 7	

body weight and it should be used to optimize dose. Antiacids do not affect the absorption 8	

of RIF. Simultaneous intake of high-fat food decreases RIF Cmax by 36% (AUC is less 9	

affected) and increase Tmax by 103%.[39] In most patients the target RIF Cmax is 8 to 24 10	

µg/mL after 600 mg of oral dose and an increased dose is recommended if Cmax is less than 6 11	

µg/mL. 12	

Several evidences point out that RIF dose is at the lower limit of optimal efficacy and that 13	

the maximum effective dose has yet to be found[40]. The consensus among experts on the 14	

use of higher doses is increasing dramatically,  as shown by growing data. A dose range trail 15	

from Boeree and colleagues showed safety of two weeks of RIF up to 35 mg/kg[41]. A 16	

higher dose (13 mg/kg intravenously) improved treatment outcome in Indonesian TB 17	

meningitis patients as reported by Ruslami[10], results from HIRIF trial with 3 study arms 18	

of 10, 15, 20 mg/kg are expected to be presented soon[42] is ongoing. Last year, preliminary 19	

results of PanACEA MAMS-TB-01 trial were presented and two weeks high-dose (up to 35 20	

mg/kg) RIF in combination with INH, PZA and ETB showed a significant shortening of 21	

time to culture conversion over 12 weeks. Data about full study have still to be 22	

published[43].  23	

Conversely, a study from Heemskerk and colleagues did not find a higher survival rate with 24	

“intensified” treatment for tuberculous meningitis (included 15 mg/Kg of RIF and 20 mg/kg 25	
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of levofloxacin) than that with standard treatment, but was argued that possibly the RIF dose 1	

was suboptimal[44,45].  2	

Some other clinical experiences have been conducted and TDM-based increased RIF dosage 3	

led to improved outcome[7,46,47].  4	

Diacon and colleagues[48] found almost the double 2-day early bacericidal activity (EBA) 5	

and higher AUC (171 versus 100 ug* h/ml) at 20 mg/kg comparing to 600 mg/die but Cmax 6	

did not differ in this study.  7	

Moreover a non linear increase in exposure might be observed because of saturation of 8	

hepatic extraction, but a model-based evaluation showed saturation of RIF clearance already 9	

at doses of about ≥ 450 mg, confirming previous studies. This could explain the non 10	

linearity of RIF concentration with dose, underexposure of lower-weight patients and the 11	

correlation between faster RIF absorption and higher bioavailability[49].  RIF is a potent 12	

inducer of pregnane X receptor mediated expression of CYP3A4 in liver and in intestine and 13	

plasma concentration of several CYP3A4 substrates are reduced (e.g. HIV protease 14	

inhibitors, oral contraceptives, azoles, statins, methadone and quinidine). It induces several 15	

other CYPs (CYP1A2, CYP2D6), phase II enzymes and efflux transporters. It inhibits 16	

OATP1B1, an organic transporter protein expressed by epatocytes responsible for the uptake 17	

of many drugs into portal circulation.[50]  18	

 19	

2.4.2 Rifabutin (RFB) 20	

RFB is derived from rifamycin S. It inhibits DNA-dependent RNA polymerase leading to 21	

suppression of RNA synthesis. It is mostly used in HIV co-infected patients because it has 22	

fewer drug interactions with antiretroviral agents (see section 2.8.2) [51]. It is a weaker 23	

CYP3A  inducer than RIF (60% less) and is also metabolized by CYP3A4 giving the rise to 24	

bidirectional interactions. Standard dose is 300 mg/day, but dose adjustement is 25	

recommended with antiretroviral therapy. The Cmax increases proportionally with increasing 26	
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the dose from 300 mg to 1200 mg/day. Concomitant intake of food decreases the rate of its 1	

absorption.  2	

 3	

2.4.3 Rifapentine (RPT) 4	

RPT is a cyclopentyl derivative of RIF with a longer half-life (14–15 hours). Its 5	

development held the hope that it would have allowed highly active once-weekly therapy; it 6	

is intermediate between RFB and RIF in activity as inducer of hepatic microsomal drug 7	

metabolizing P450 enzymes.  8	

TBTC Study 22 compared once-weekly regimen of INH and RPT with twice weekly INH 9	

and RIF in the continuation phase of treatment for pulmonary tuberculosis in HIV-positive 10	

and HIV-negative patients. Acquired rifamycine monoresistance among HIV-positive 11	

patients arm led to the closure of HIV-seropositive arm of the study.[52] 12	

The hypothesized reasons for the unexpected results were: the inadequate dose of RPT (600 13	

mg) and the inferior activity of INH due to the shorter half-life or the patients’ acetylator 14	

status. A study by Weiner and colleagues in 2003 found that low INH plasma concentrations 15	

were associated with failure and relapse with once-weekly INH/RPT regimen[53].  16	

Higher dosages of RPT were safely administered in following trials (RIFAQUIN study 17	

where RPT was used at 900 mg twice weekly and 1200 mg once weekly [54]and PREVENT 18	

TB study were RPT was used at 900 mg once weekly[55]). TBTC Study 29 compared RPT 19	

600 mg daily with RIF 600 mg daily administered without food and it was safe, well 20	

tolerated, and as effective as RIF. [56] 21	

Population pharmacokinetic studies showed that increasing the dose of RPT led to a minor 22	

bioavalabilty of the drug and less-than-dose-proportional pharmacokinetics but no plateau in 23	

exposures from 450 mg to 1800 mg was observed. [57] Studies to assess the safety, activity 24	

and pharmacokinetics of higher daily RPT doses in patients with active TB are needed.[58] 25	

 26	
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Currently, RPT is only available in US and, according to CDC guidelines[59],  its use is 1	

recommended for the treatment of latent TB infection at the dose of 1200 mg with INH 2	

given once weekly for 12 weeks. It is also an option in the continuation phase of treatment 3	

for multi-sensitive TB in selected patients (HIV-negative patients without cavitary lesions 4	

and negative culture at 2 months of treatment[60]) at the dose of 600 mg with INH 900 mg 5	

once weekly in uncommon situations where more than once-weekly DOT is difficult to 6	

achieve. In 2010, European Commission assigned to RPT orphan drug status for TB 7	

treatment. 8	

 9	

2.4.4 Isoniazid (INH) 10	

INH is a prodrug, converted by mycobacterial enzyme katG to its active form. The 11	

mechanism of action is to inhibit the mycolic acid synthesis, disrupting the bacterial cell 12	

wall.[61] Mutations in katG and inhA genes are responsible for main mechanisms of INH 13	

resistance.[62]  14	

INH has the highest early bactericidal activity (EBA) and acts against replicant extracellular 15	

mycobacteria. Its effect rapidly decreases after first days and its activity is associated with 16	

AUC and acetylator status. MIC ranges from 0.01 to 0.25 µg/mL. Studies investigating EBA 17	

activity have shown that maximum achievable EBA with clinically tolerable doses[63] was 18	

with at plasma concentrations of 2-3 µg/mL. It is recommended to give INH on empty 19	

stomach because food and antiacids reduce INH Cmax (high-fat meal causes a drop of 51% of 20	

Cmax).  21	

 22	

2.4.5 Pyrazinamide (PZA) 23	

Pyrazinamide’s mechanism of action is still not well defined and the drug appears to act, at 24	

least partially, by acidifying the cytoplasm of the cell. It is a prodrug  that requires 25	

conversion to  pyrazinoic acide (POA) by an amidase encoded by pncA. Mutation of this 26	
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gene is the more common cause of PZA resistance. A study in mice found that systemic 1	

delivery of POA was not sufficient to reduce bacillary burden, even if POA concentration in 2	

plasma, ELF (epithelial lining fluid) and lung lesion were similar to those produced by 3	

effective doses of PZA. New technics exploring delivering of POA at the site of 4	

infection[64] (into macrophages or intrapulmonary with adjunt inhalation therapy[65]) are 5	

ongoing. PZA has the potential effect of shortening treatment duration due to its great 6	

sterilizing activity. A trial exploring a regimen containing PZA, pretomanid and 7	

moxifloxacin showed efficacy at week 8, even in MDR-TB strains[66]. Recommended 8	

therapeutic range is 20-60 ug/mL.[26] Coadministration of allopurinol with PZA decreases 9	

pyrazinic acid clearance and causes acid uric accumulation due to inhibition of acid uric 10	

excretion[67]. 11	

Recent hollow fiber PK/PD study demonstrated that PZA’s sterilizing effect was best 12	

explained by the AUC/MIC ratio, whereas resistance suppression was linked to T>MIC. 13	

Monte Carlo simulations revealed that doses higher than the currently recommended 2 g/day 14	

would have a better likelihood of achieving the AUC/MIC ratio associated with 90% of 15	

maximal effect, but safety concerns arise. PZA serum clearance has been shown to increase 16	

with increases in body weight[14].  17	

 18	

2.4.6 Ethambutol (ETB) 19	

ETB is a semisynthetic antibiotic which is bacteriostatic against Mycobacterium 20	

tuberculosis. ETB acts by inhibiting arabinosyl transferase enzyme, thus blocking the 21	

synthesis of arabinogalactan, which forms the mycobacterial cell wall.[68] 22	

Mutations in embB gene that code for arabinosyl transferase enzyme are related with ETB 23	

resistance (MIC above 5 µg/mL). Resistance to ETB is higher in INH-resistant straind due 24	

to the correlation with mutation at katG Ser315 amd iniA, which encodes an efflux pump 25	

transporter.  26	
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Concentrations measured in lung tissue, ascitis and pleural fluids are far higher than ones 1	

reached in plasma. ETB does not penetrate intact meninges, but in patients with TB 2	

meningitis the penetration increases by 10-50%. Aluminium-containings antiacids decreases 3	

the Cmax by 28% and AUC by 10%. Although mechanisms of sex-related differences in 4	

drug concentration are poorly understood lower ETB concentrations were found in female 5	

patients. In the same study albumin levels were inversely correlated with concentrations and 6	

the reason for this is unclear but is possibly related to altered pharmacokinetics in more 7	

severe diseases or malnutrition[28]. Recommended plasma concentrations are between 2 and 8	

6 µg/mL. Some reports suggest that increasing the dose to 25 mg/kg/daily would be the 9	

preferred regimen for most patients, monitoring for toxic effects.[69]  10	

 11	

2.4.7. Streptomycin (S) 12	

Streptomycin, discovered almost 70 years ago, was the first agent of the aminoglycosides 13	

class to be used for TB treatment, promptly replaced by INH. Its use is limited by relatively 14	

high rates of resistance (particularly in high incidence countries); current guidelines 15	

recommend its administration as fourth drug in multisensitive TB treatment (as alternative to 16	

ETB). 17	

Aminoglycosides act mostly as protein synthesis inhibitors both as 30S-subunit ribosome 18	

blockers and interference with proofreading process. They also disrupt the integrity of 19	

bacterial cell membrane.  20	

While S is not usually included with second-line drugs it can be used as the injectable agent 21	

of the core MDR-TB regimen if none of the three other agents (amikacin, capreomycin and 22	

kanamycin) can be used and if the strain can be reliably shown to be sensitive. However S 23	

resistance does not play a part in the definition of XDR-TB and that DST (Drug 24	

Susceptibility Testing) results are not considered accurate[70]. 25	
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Streptomycin resistance has been ascribed to mutational changes in rpsL and 16-S ribosomal 1	

RNA genes involving ribosomal binding protein or the ribosomal binding site. Isolates 2	

resistant to S are not cross-resistant to amikacin, kanamycin, or capreomycin. The members 3	

of the amynoglicoside family share the potential for nephrotoxicity, ototoxicity and rarely 4	

neuromuscular blockade. Intramuscular injection of 1 g yields peak plasma concentration of 5	

35-45  µg/mL and it is virtually excluded form SNC. Recommended dosage in younger 6	

adults with normal renal function is 15 mg/kg/day IM. The drug can be safely given IV 7	

when needed, although is not approved for such use[71]. In patients with reduced renal 8	

function is recommended a dose of 15 mg/kg twice/thrice-a-week. 9	

 10	

2.5 Second-line drugs characteristics and PK/PD relationships  (Table 2-3) 11	

 12	

2.5.1 Fluoroquinolones 13	

Fluoroquinolones act by inhibiting two bacterial enzymes, DNA gyrase and topoisomerase 14	

IV involved in DNA replication. They exhibit concentration-dependent killing and a post-15	

antibiotic effect.[72] Limited data from human studies are available for evaluating the PD 16	

thresholds necessary for maximizing therapeutic success. The two most commonly FQ used 17	

for the treatment of MDR-TB are levofloxacin and moxifloxacin due to their high Cmax/MIC 18	

profile. Recently, three major international multicentre phase III trials demonstrated that 19	

four different 4-month regimens did not provide as good a standard of care as the 6-month 20	

regimen[54,73,74]. DDIs (drug-drug interactions) between RIF and moxifloxacin have been 21	

reported. Moxifloxacin AUC is reduced by 27%, and the half-life decreased by 36%, 22	

although no change in the peak concentration in serum was identified. This effect seems to 23	

be mediated by increased activity of the sulfate conjugation pathway of moxifloxacin 24	

metabolism, because coadministration of RIF resulted in marked increases in levels of the 25	
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M-1 metabolite.  Some authors suggest to increase moxifloxacin dose to 600 mg/day when 1	

coadministered with RIF.[75][76] 2	

A hollow fiber study determined that moxifloxacin was able to suppress the development of 3	

resistance with freeAUC0-24h/MIC of 53 µg*hour/ml. In clinical trial simulations 4	

moxifloxacin 400 mg/day had a target attainment rate of only 59%, improved to 90% with a 5	

dose of 800 mg; this was further confirmed in murine models but safety in humans has not 6	

yet been established[14]. Resistance to FQ depends on substitution in the GyrA and/or GyrB 7	

and is defined by the WHO as resistance to at least 2 µg/ml of ofloxacin. Sterilizing activity 8	

of moxifloxacin decreases gradually against strains with increasing levels of resistance 9	

(from low to high). Therefore among strains resistant to 2 mg/L ofloxacin identification of 10	

moxifloxacin level of resistance is required[77].  11	

 12	

2.5.3 Capreomycin, amikacin and kanamycin  13	

Capreomycin, amikacin and kanamycin,  according to new WHO classification, are 14	

considered as a group (group B) because they are all administered by intramuscular or 15	

intravenous injection, have similar pharmacokinetics and toxicity and are excreted by renal 16	

route. Capreomycin is a polypeptide active against M. tuberculosis, including most MDR-17	

TB strains. MIC ranges from 1 to 50 µg/mL. The dose is 500 mg-1 g IM 5 times/week. If an 18	

isolate is resistant to both S and kanamycin capreomycin should be used. 19	

Amikacin is the most active in vitro amynoglicoside against M. tuberculosis as well as in 20	

animal models. Limited data are available in human tuberculosis because of its cost and 21	

relatively greater toxicity (as compared to S and capreomycin, in the US it replaced 22	

kanamycin). The dose is 7-10 mg/kg five times/week and TDM is  available in laboratories. 23	

Amikacin and kanamycin are considered to be very similar and have a high frequency of 24	

cross-resistance. Kanamycin is an amynoglicoside active against most S-resistant strains. It 25	
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has no clear advantage over amikacin, except for lower cost; the dose is 15 mg/kg IM, 1	

limited to 500 mg/day due to a certain risk of ototoxicity. 2	

 3	

2.5.4 Other second-line drugs 4	

Few data are available about PK/PD parameters of other second line drugs and data we have 5	

are mostly desumed from non-TB models[16].   6	

Linezolid (LZD) is an oxazolidinone agent. It is active against gram-positive bacteria, 7	

including resistant strains. It is used in the treatment of nosocomial pneumonia, skin and soft 8	

tissues infections caused by gram-positive bacteria. As second-line agent it can be used in 9	

the treatment of MDR TB and belongs, according to last WHO update to C group. It acts by 10	

binding to the 50S subunit of bacterial/mycobacterial ribosome producing an early inhibition 11	

of protein synthesis.[78]  LZD for other human pathogens is time and concentration 12	

dependent. In a study on TB patients the correlation between plasma concentrations and 13	

activity is linear at values AUC/MIC less than 120 but disappears once  T>MIC reaches 14	

100% (where T/MIC is the cumulative percentage of the dosing interval that the drug 15	

concentration exceeds the MIC under steady-state condition)[79].   16	

Gebhart and colleagues found that RIF, inducing P-gp expression, leads to increased 17	

clearance of LZD (reduction in LZD serum concentration up to 30%) supporting the 18	

hypothesis that P-gp expression plays a role in the potential interaction between the two 19	

drugs[80], but several reports confirmed the efficacy on this combination[81]. 20	

 21	

Bedaquiline is a novel diarylquinoline that acts by inhibiting the M. tuberculosis adenosine 22	

triphospate (ATP) synthase. It was approved by US FDA in 2012 and by EMA (European 23	

Medicine Agency) in 2013. It is metabolized by CYP3A4 to M2 as main metabolyte and a 24	

sgnificative reduction in exposure results if coadministrated with RIF or RPT.[82] MIC 25	

ranges from 0.03 to 0.12 ug/mL. Its activity against both susceptible and MDR strains seems 26	
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to be promising to shorten treatment duration. Food increases the bioavailability by 1	

twofolds. It has an extensive tissue distribution and steady state is reached after 7 days with 2	

a time-dependent bactericidal activity[83]. The dose is 400 mg/day for 14 days followed by 3	

200 mg thrice-a-week. It has a synergic activity with PZA.[84] Its PK characteristics are 4	

compatible with once a week administration.[85] There are concerns on safety because of 5	

the cardiovascular toxicity and QT prolongation (see section 2.6). Animal reproduction 6	

studies have failed to demonstrate a risk to the fetus, but no data on pregnant women are 7	

available (for FDA pregnancy category B). 8	

Delamanid is a nitroimidazole and inhibits mycolic acid synthesis. It has been approved in 9	

2014 by EMA. It has a good oral bioavailability, enhanced with food and has a 10	

concentration dependent bactericidal effect. The dose is 100 mg twice-a-day. MIC ranges 11	

from 0.006 to 0.024 ug/mL in both susceptible and resistance strains.  It is thought to be 12	

primarily metabolized by albumin, with secondary contributions from P450 enzymes, 13	

primarily CYP3A4. Delamanid resulted teratogenic in reproductive toxicity studies in 14	

animals, but no data in humans.[86] 15	

The use of the more recently approved drugs is currently recommended in adult patients 16	

with pulmonary MDR-TB for 24 weeks when an effective  treatment containing four 17	

second-line drugs in addition to PZA cannot be designed and/or when there is  documented 18	

evidence of resistance (or intolerance) to any FQ or second-line injectable drug (the latter 19	

specifically for delamanid). Additional indication for delamanid is the presence of risk 20	

factors of poor outcome such as: advanced/extended disease, HIV coinfection, high sputum 21	

bacillary load, low BMI, and comorbidities (e.g. diabetes mellitus). The concomitant use of 22	

bedaquiline and delamanid is not allowed by manufacturers and is not recommended by 23	

WHO (nevertheless a sequential use is permitted)[87].Two case reports of co-administration 24	

were published[88,89] and it may be considered in selected patients and in presence of 25	

appropriate monitoring conditions. 26	
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Pretomanid (PA-824), another nitroimidazole, is in Phase II studies. It is a prodrug that 1	

needs to be activated by mycobacterial glucose-6-phosphate dehydrogenase. Surprisingly, it 2	

exhibits a time-dependent bactericidal activity[90]. MIC ranges from 0.015 to 0.25 ug/mL 3	

against susceptible and resistant strains. Concomitant intake of foods increase the absorption 4	

and it exibits a high tissue penetration. Promising results have been observed in  EBA 5	

studies with combination of pretomanid/bedaquiline/ pyrazinamide[91] and 6	

pretomanid,/moxifloxacin/pyrazinamide (at 2[92] and 8 weeks[66]).  7	

 8	

2.6 Pharmacokinetics and toxicity 9	

Combination antitubercular treatment is associated with a significant incidence of drug-associated 10	

side effects: preventing toxicity might be beneficial also in terms of treatment interruption 11	

(estimated approximately at 5%), failures and selection of resistance[93]. Clinically relevant 12	

adverse effects include nausea, rash and occasional hepatotoxicity. 13	

Concentration-dependant toxicity has been observed for ETB (optical neuritis) and PZA 14	

(hepatotoxicity), whereas for INH and RIF it is still uncertain[94,95].   15	

 16	

RIF-induced hepatitis occurs in up to 2.5% and it does not seem to be dose related even with higher 17	

doses[96]. Intermittent regimens with higher RIF doses (1200 mg or more) seem to be rather related 18	

with higher risk of flulike syndrome[97],[98],[99].  19	

RFB can cause neutropenia and anterior uveitis and the risk appears to increase as RFB and 25-20	

desacetyl-RFB exceeds 1 µg/mL.[9]  21	

Periphery neuropathy, through the increase of the excretion of pyridoxine, is a rare INH dose-22	

dependent adverse event. Patients at increased risk are those with HIV infection, diabetes, renal 23	

failure, alcoholism, malnutrition and pregnant/lactating women. Supplemental pyridoxine (vitamin 24	

B6) is recommended at the dose of 150 mg 3 times per week. In lactating women taking INH, 25	
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supplementation of pyridoxine has to be administered to newborns as well for the passage through 1	

breast-feeding.  2	

 3	

Regarding second-line drugs few data are available about toxicity related with plasma 4	

concentrations. 5	

The primary concerns with aminoglycosides are auditory, vestibular and renal toxicity[100] and 6	

seem related to higher cumulative dose and older age.  7	

Higher doses of moxifloxacin (600-800 mg) are being studied but dose escalation needs particular 8	

attention due to the risk of QT prolongation. 9	

Data on LZD are mainly derived from gram-positive bacterial infections, its use is limited by its 10	

long-term adverse effects, including myelosuppression, lactic acidosis, ocular and peripheral 11	

neuropathy. The mechanism through toxicity occurs is not perfectly understood and the dose for 12	

mycobacteria has not yet clearly been established, even if 600 mg daily seems to be generally 13	

accepted. Maintenance of a serum LZD Cmin between 2 and 7 µg/mL has been suggested as a step 14	

for improving safety outcomes while retaining appropriate efficacy.  15	

Bedaquiline prolongs QT and this effect extends for weeks after drug discontinuation. A study on 16	

healthy volunteers did not observe effect of a single incremented dose of 800 mg on QT and no 17	

association were found between QT and bedaquiline or M2 (major metabolite) plasma 18	

concentrations[101].  19	

Delamanid may affect the length of QT interval as well: this appears to be dose-related and 20	

increasing over the initial 6–10 weeks of treatment. The effect has been linked to delamanid’s major 21	

metabolite DM-6705. Both CYP3A4 inducers and inhibitors may increase levels of DM-6705, 22	

necessitating more intensive cardiac monitoring in such settings[86].  23	

 24	

2.7 Pharmacogenetics 25	
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The interindividual differences genetically determined play a relevant role in designing a tailored 1	

treatment approach. Historically metabolizing phenotypes (later discovered to be associated with 2	

NAT-2 genetic variants) have been associated with INH metabolism and toxicity; recently several 3	

pieces of evidence have been published on the effect of single nucleotide polymorphisms (SNPs) in 4	

genes encoding for proteins involved in drug disposition. 5	

 6	

2.7.1 Rifampicin and PG 7	

RIF is a substrate of P-glycoprotein and OATP1B1; the latter is an influx transporter mainly 8	

expressed in basolateral membrane of hepatocytes and that facilitates RIF uptake into 9	

hepatocytes. Genetic variants in SLCO1B1 (encoding for OATP1B1) have been shown to 10	

affect the protein expression and activity. 11	

In particular, Chigutsa and colleagues[102] undertook a study in South African patients with 12	

tuberculosis and found that SLCO1B1 genetic polimorphism rs4149032 (which occurs at a 13	

high frequency in the black African population) is associated with reduced RIF 14	

concentrations. Patients heterozygous and homozygous for this polymorphism had 15	

reductions in the bioavailability (and, thus, AUC) of RIF of 18% and 28%, respectively. 16	

This study suggests that an increase in RIF dose would be desirable for carriers of the 17	

SLCO1B1 polymorphism and a simulation showed that increasing the daily RIF dose by 150 18	

mg in patients with the polymorphism would result in plasma concentrations similar to those 19	

of wild-type individuals and would reduce the percentage of patients with Cmax below 8 20	

mg/L (from 63% to 31%). Two other common non-synonymous SLCO1B1 variants have 21	

been studied: rs2306283 (previously referred to as 388A>G) and rs4149056 (commonly 22	

referred to as 521T>C). These two variants are in partial linkage disequilibrium. 23	

Consequently, there are four important haplotypes: SLCO1B1*1A, containing neither 24	

variant, SLCO1B1*1B (rs2306238), SLCO1B1*5 (rs4149056) and SLCO1B1*15 (both). The 25	

SLCO1B1*15 haplotype have been found to be associated with rifampin-induced liver injury 26	
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in a Chinese population and may have a role in cholestatic/mixed injury although other 1	

studies in similar ethnic groups did not confirm such observation.[103,104] 2	

Weiner and colleagues[105] studied the effect of genetic polymorphisms of ABCB1 3	

(encoding for P-glycoprotein), SLCO1B1 and SLCO1B3 in patients with TB from different 4	

regions (North America, Spain, Africa) and in healthy subjects. The results showed that 5	

patients with SLCO1B1 463C>A variants (rs11045819) had a 36% lower RIF AUC 6	

compared to CC genotypes.  7	

Another investigated gene was the carboxylesterase 2 (CES2) because have been shown to 8	

significantly affect the plasma concentrations of RIF. CES2 is thought to be responsible for 9	

the formation of the main metabolite of RIF by deacetylation[106].  10	

Moreover mixed results have been published on the effect of ABCB1 SNPs on RIF 11	

exposure. ABCB1 encodes for P-gp that is both a substrate of RIF and could be induced by 12	

RIF. More studies are needed to investigate the potential to influence drugs transport and 13	

intracellular accumulation[107].  14	

 15	

2.7.2 Isoniazid and  PG 16	

INH is primarily metabolized by acetylation via N-acetyl transferase 2 (NAT2). The rate of 17	

elimination of INH depends on NAT2 metabolic activity and the activity is controlled by 18	

active alleles. According to NAT2 genotype patients can be characterized as slow (without 19	

any active alleles), intermediate (heterozygous for NAT2*4) and rapid acetylators 20	

(homozygous for NAT2*4, wild type). Rapid acetylators are at higher risk of treatment 21	

failure whereas slow acetylators may develop hepatotoxicity. Gene frequency for the slow 22	

allele varies in different ethnic groups and geographical areas being 10% in Japaneses and 23	

Eskimos, 60% in Caucasians and subjects of African Ancestors and 90% in subjects from 24	

the Middle-East. 25	
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A genotype-guided randomized and controlled trial investigated the rate of treatment failure 1	

and INH related liver injury (INH-DILI) in 172 Japanese patients with pulmonary TB[108]. 2	

Patients in the PGx-arm (pharmacogenetic guided arm) received 2.5 mg/kg, 5 and 7.5 mg/kg 3	

INH according to their slow, intermediate or rapid acetylator status, respectively while those 4	

in the standard dose arm received approximately 5 mg/kg. INH-DILI occurred in 78% of the 5	

slow acetylators in the standard-treatment (STD), while none of the slow acetylators in the 6	

PGx-treatment experienced either INH-DILI or early treatment failure. Among the rapid 7	

acetylators, early treatment failure was observed with a significantly lower incidence rate in 8	

the PGx-treatment than in the STD-treatment (15% vs. 38%). 9	

 10	

2.7.3 Ethambutol and PG 11	

A recent pharmacogenetic study from our group found an association between SNPs in 12	

ABCB1, CYP24A1, Vitamin D Receptor (VDR) gene and plasma/intracellular ETB 13	

concentrations. Further researches are needed to understand the clinical relevance of these 14	

findings[109].  15	

 16	

2.7.4 Second-line drugs and PG 17	

The influence of SNPs in genes encoding for transporters on FQ plasma concentrations has 18	

been investigated for moxifloxacin. Weiner and colleagues found that SNP 3435C>T 19	

(rs1045642) in ABCB1 gene coding for P-gp have not influence on moxifloxacin PK levels. 20	

Therefore P-gp does not seem to be a major determinant of moxifloxacin disposition.[75] 21	

So far no study was published about PG of amynoglicosides, except for one report of oral 22	

tobramycin absorption influenced by P-gp inhibitors.  23	

The only published data regarding LZD and PG is the reported interaction between RIF and 24	

LZD that may be dependant on P-gp and therefore, potentially, on SNPs affecting P-gp 25	

activity.[80] 26	
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 1	

2.7.4 Hepatotoxicity and PG 2	

The incidence of hepatotoxicity during antitubercular treatment varies from 2% to 3	

28%[110]. The exact mechanism is unknown but toxic metabolites have a role in the 4	

development of it. 5	

Investigations of genetic polimorphisms relating to drug induced hepatitis have been 6	

conducted and CYP2E1 and GST genes resulted to influence the incidence of it. 7	

CYP2E1 activity depends on INH blood concentrations. INH or its metabolite could both 8	

induce and inhibit CYP2E1. The variant CYP2E1 genotype is more susceptible to the 9	

inhibition than the common genotype. The enhanced activity causes increased production of 10	

hepatotoxins and consequently increased risk of hepatotoxicity[111].  11	

Furthermore CYP2E1 polymorphisms were found to be related with the severity of 12	

antitubercular drug-induced hepatotoxicity[112]. 13	

 14	

GSTs enzymes are involved in detoxification of drugs and other chemical substances. Of the 15	

five encoding loci GSTM1 and GSTT1 were reported to be associated with hepatotoxicity in 16	

Western Indian population. Homozygous deletion at GSTM1 and GSTT1 loci could 17	

influence  susceptibility to INH-induced liver toxicity[113].  18	

 19	

 20	

2.8 Pharmacokinetics in special populations 21	

Three groups of patients may be at higher risk of failure and/or side effects and therefore might 22	

benefit from personalization of ATD dosage: pediatrics, HIV-positive and diabetic subjects. 23	

 24	

2.8.1 Pediatrics  25	
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Approximately 1 million of TB cases occur in children every year: interpatient variability in 1	

enhanced in children and the risk of under-dosing is consistent. In 2010, WHO recommended 2	

increased pediatric dosages for RIF (10–20 mg/kg), INH (7–15 mg/kg), PZA (30– 40 mg/kg), 3	

and ETB (15–25 mg/kg), which are higher than the adult recommended dose.  To date, few 4	

studies have evaluated the PK of the WHO revised dosages in children[114]. A study on 127 5	

Indian children showed increased concentration of INH, PZA and RIF with revised dosages, 6	

though the change was not significant for RIF. In this study no effect on outcome or due to 7	

malnutrition was observed. The effect of malnutrition, heavily affecting some settings, on 8	

pharmacokinetics of ATDs in children is not well known[115].  9	

From these and other data much additional work is needed to characterize the PK and PD of the 10	

four first-line anti-TB drugs in pediatric patients.  11	

The use of bedaquiline under 18 years old is off label. A PK and safety study is planned. So far 12	

no pediatric formulation is available. The dose is 6 mg/kg as loading dose followed by dose of 3 13	

mg/kg.  14	

Delamanid, through compassionate use, can be administered to children older than 6 years old or 15	

above 20 kg. Good PK data and safety have been shown in this population. Pediatric formulation 16	

is being developed. The dose is: 100 mg twice daily if >35 Kg; 50 mg twice daily if 20-35 Kg. A 17	

case series has beeen published (children between 8 and 17 years old) with good results.[116]  18	

 19	

2.8.2 HIV-positive patients  20	

TB is the most frequent infection in people living with HIV accounting for one third of deaths. In 21	

Sub-Saharian Africa most of the people with TB are HIV positive and death rate by TB infection 22	

are higher in this population[1]. Treatment for HIV infected patients do not require any 23	

adjustment in doses except that intermittent regimens are no longer recommended, as stated by 24	

international guidelines, due to the increased risk of relapse, failure and acquired RIF 25	

resistance[117,118].  26	
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The effect of HIV co-infection on the pharmacokinetics of the four first-line anti-TB drugs (and 1	

treatment outcome) seems to be largely dependent on the patient’s clinical status and on the 2	

concurrent medications the patient is receiving. In some of the earlier studies[119], patients with 3	

advanced HIV/AIDS showed a significant decrease in plasma levels of the first-line anti-TB 4	

drugs; recent data did not confirm these observations.[120]  5	

Clinically relevant DDIs have been reported between ATDs and antiretroviral drugs (ARVs). 6	

Rifamycins are potent inducers of phase I (e.g. CYP450) and phase II (e.g. UGT) liver enzymes 7	

and may reduce plasma concentrations of concomitant drugs metabolized by these enzymes. 8	

Guidelines recommend the use of  RIF with efavirenz (at standard dose, 600 mg), raltegravir 9	

(exposure to standard dose of 400 mg twice-a-day seems to ensure adequate raltegravir 10	

concentrations, but more data are needed[121]) and dolutegravir (doubling the dose, 50 mg 11	

twice-a-day). The extent and direction of effect of RIF on efavirenz seems to be dependant on 12	

CYP2B6 genotype: the presence of CYP2B6*6/*6 genotype is associated with slow efavirenz 13	

metabolism, and other alternative metabolic pathways gain importance (CYP1A2, CYP2 A6, 14	

CYP3A4/5). Higher efavirenz concentration has been found in patients harbouring haplotype 15	

CYP2B6*1/*6 and expecially CYP2B6*6/*6. This increase in EFV plasma exposure under TB 16	

regimen it can be partially explained also by an inhibitory effect of isoniazid (usually in the TB 17	

regimen) on alternative metabolic pathways.[122] RIF is contraindicated with protease inhibitors 18	

(PI) because causes relevant (50-80%) decreases in PI concentration: higher dose of 19	

lopinavir/ritonavir (400/400 mg twice daily) may be necessary but higher incidence of liver and 20	

gastro-intestinal toxicity was reported. Population pharmacokinetic models suggested that 21	

darunavir/ritonavir (1600/200 mg once daily, 800/100 mg twice daily and 1200/150 mg twice 22	

daily) could potentially overcome reduced darunavir concentrations with RIF.[123] This is a 23	

significant problem in patients on second-line ARV regimens (often receiving PIs) since RFB is 24	

expensive and often unavailable.  25	
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RFB is a less potent inducer than RIF and RFP; however its main metabolite (25-desacetyl-RFB) 1	

is a CYP3A4 substrate. Co-administration of RFB with potent CYP3A4 inhibitors (such as 2	

ritonavir and cobicistat), may increase the risk of adverse effects such as anterior uveitis. 3	

Consequently, current guidelines recommend modifying RFB doses when administered with 4	

PI/r, although there is a lack of international consensus as to the optimal dose: 150 mg every 5	

other day has been associated with treatment failure and selection of RIF-resistant strains.[124] 6	

Evidences favor the administration of RFB 150 mg every day although 150 mg thrice-a-week is 7	

recommended with atazanavir/ritonavir (for the increase in RFB and 25-desacetyl-RFB Cmax and 8	

AUC). [51] A dose-increase to 450 mg is suggested when RFB is co-administered with 9	

efavirenz: no other dose-adjustment is currently suggested. Coadministration of rilpivirine is 10	

contraindicated. [125]  11	

Regarding bedaquiline no major interactions are expected with the use of integrase inhibitors: on 12	

the contrary administration of CYP3A4 inducers and inhibitors should be avoided.[82][126] 13	

Little effects were seen with delamanid (lopinavir/ritonavir was associated with a 20% increase 14	

in delamanid exposure and a 30% increase in delamanid’s metabolite DM-6705). South african 15	

cohort observed good clinical outcomes in a cohort of HIV-positive patients largely treated with 16	

lopinavir/ritonavir.[86] 17	

 18	

2.8.3 Diabetic patients 19	

Type 2 diabetes mellitus (DM) is a strong risk factor for TB infection and is associated with a 20	

slower response to treatment and with higher mortality rates. Some diabetic patients experience 21	

delayed or reduced drug absorption: the results of several observations on ATDs plasma 22	

concentrations are however heterogeneous. In some studies, DM was associated with decreased 23	

plasma levels of RIF and INH[27,127], whereas in others, there was no clear relationship 24	

between plasma concentrations of first-line ATDs and DM[128,129]. Consequently the 25	
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relationship between low plasma concentrations and poor outcomes need to be further studied in 1	

diabetic patients in order to identify other potential predictors and tailor antiTB treatment. 2	

 3	

2.9 Intralesion, intracellular and intrabacterial pharmacokinetics 4	

 5	

The sites of action of ATDs in pulmonary tuberculosis are the tissue compartments with pulmonary 6	

lesions and specifically drugs have to be in adequate concentrations in the ELF, in alveolar 7	

macrophages and inside mycobacteria. Despite the efficacy of antitubercular regimen little is know 8	

about the penetration of drugs and if this aspect plays a role in the long needed combination 9	

therapy. Considering that drug concentrations are associated to treatment outcome lesion 10	

penetration may contribute to it for the relation with incidence of relapse or the development of 11	

phenotipic drug resistance. Determination in venous plasma may not correctly predict real exposure 12	

of drugs to organs and to different components of a lesion.   13	

Moreover inoculum effect (the variation of MIC according to the number of bacterial population) 14	

and phenotipic tolerance (variation of MIC according to metabolic state of subpopulations) at the 15	

site of infection may have a relevant role in determining the efficacy of regimen and the selection of 16	

resistance. 17	

Kjellsson and colleagues[130] found in a rabbit model that RIF, PZA and INH (RIF>PZA>INH) 18	

reached lower lesion concentrations in comparison to plasma ones, although RIF seems to 19	

accumulate in uninvolved lung tissue. In contrast moxifloxacin displayed the highest distribution in 20	

lesions, using tissue homogenate. 21	

MALDI-MSI technology was applied by Prideaux and colleagues[131] to observe that, within the 22	

granuloma, moxifloxacin reached very low levels in the caseum (where typically reside persister 23	

mycobacteria) in comparison to the cellular granuloma regions. We may speculate that this is the 24	

reason why FQ-using shortening trails failed. PZA seems to be the only agent with good diffusion 25	

into caseum and be active against persister mycobacteria. Prideaux and colleagues[132] described 26	
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in human lung lesions, using very refined methods, the distribution of  these drugs, confirming 1	

previous results. Besides, lipophilic drugs (RIF, RPT, bedaquiline, pretomanid and clofazimine) 2	

seems to be more active than hydrophilic agents (INH, PZA, ETB, amikacin, moxifloxacin) against 3	

dormant mycobacteria in hypoxic condition as within cellular granuloma, whereas in the necrotic 4	

centre the pH ranges between 7.2 and 7.4.[133] 5	

Haartkoorn et al[134] investigated INH, ETB and RIF activity inside infected macrophages. RIF is 6	

a drug with excellent activity against intracellular bacilli, concentrating from 2 to 5-fold in 7	

macrophages, however higher concentrations were required to kill intracellular mycobacteria. INH 8	

modulated the growth of mycobacteria at similar concentrations inside and outside the cell. Dhillon 9	

found, in animal model, that PZA and ETB expresses bacteriostatic activity in macrophages with a 10	

MIC equivalent to extracellular one.[135] 11	

From previous studies aminoglycosides have intracellular/extracellular (I/E) ratio that is lower than 12	

1, INH has an I/E ratio of around 1, RIF has an I/E ratio of between 2 and 5, and ETB and the 13	

macrolides have I/E ratios ranging from 10 to >20[136,137].  14	

Some experience have been made measuring drug concentrations inside PBMCs (peripheral blood 15	

mononuclear cells) for being easily and readily collectable, and possibly a good surrogate of 16	

alveolar macrophages, partially confirming previous results of I/E ratio[138,139],[140]. Reduced 17	

permeability of M. tuberculosis to drugs further contributes to the inferior susceptibility of the 18	

quiescent bacterial population to the therapy. Interestingly, studies have reported that intrabacterial 19	

penetration of FQ is reduced in non replicating mycobacteria and is only partially explained by 20	

efflux. Moreover polyamine (organic compounds present both in eukaryotic and prokaryotic cells) 21	

inhibit uptake of fluoroquinolones and accumulate with inflammation contributing to the 22	

development of dormancy for their tuberculostatic effect[141].  23	

 24	

3. Conclusion  25	

 26	
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Pharmacokinetic variability of ATDs is driven by multiple factors and reported data point the way 1	

toward individualized dosing. Maximizing efficacy of existing drugs and minimizing toxicity on a 2	

large scale with TDM and pharmacogenetics will likely show benefit. More data are needed 3	

especially for second-line drugs and new released drugs. 4	

Efficacy, safety, tolerability and potential sterilizing effect of  increased rifampin dosing need to be 5	

further explored because promising results from EBA studies are limited to bactericidal activity.  6	

NAT2 influence on pharmacokinetics offers an example of how dosing can be adjusted for different 7	

patient genotype and could be extended to SLCOB1 polymorphisms. 8	

 9	

4. Expert opinion  10	

Ending the tuberculosis epidemic is one of the key goals of the WHO post-2015 strategy. It will be 11	

achievable with the widespread and well-tollerated treatment administered to all precociously 12	

diagnosed patients with tuberculosis and with the optimized therapy for patients harbouring 13	

resistant strains. The best use of currently available drugs is critical in delivering efficacious and 14	

safe treatment and to implement shorter combinations: the failure of fluoroquinolones shortening 15	

trials tells us that we need to better understand the tissue penetration of antibiotics. ATDs’ plasma 16	

concentrations are associated with treatment efficacy but clear cut off have not being defined and 17	

the majority of patients are cured despite very low plasma levels; yet significant variability and 18	

underexposure of ATDs are common features and the relationship with concentrations at the site of 19	

action (intra-macrophage and intra-lesional) are poorly understood. 20	

Therapeutic drug monitoring may be suggested in groups at risk of failure, toxicity or lower 21	

exposure such as children and adolescents, HIV-positive individuals, diabetics, patients with renal 22	

or liver impairment or subjects taking potentially interacting drugs. Its use in those with delayed 23	

response to treatment has been tested and we strongly recommend its application. Underexposure, 24	

especially if involving more than one compound, requires adequate dose adjustements and further 25	

controls. The lack of PK laboratories (performing HPLC/UPLC or GC techniques) calls for 26	
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capacity building in centralized facilities and for the use of dried blood/plasma spots for safe and 1	

cheap samples delivery. Sequential samples or application of Limited Samples Strategy (LSS) to 2	

calculate AUC are preferred rather than a 2-hour post-dose sample to correctly estimate drugs’ peak 3	

concentrations.   4	

Furthermore the optimization of currently available first-line drugs involves their tailored per 5	

kilogram dose, their once-daily administration, the correct relationship to food intake (fasted RIF, 6	

INH and fed ETB  and PZA) and the avoidance of potentially interacting drugs.  7	

The individualization of ATDs’ dose according to subjects’ genetic variants require more 8	

prospective data as well as controlled trials. In the meanwhile we collect, after patients’ signing 9	

written informed consents, NAT2, SLCO1B1 and PXR genotypes. We are currently reducing INH 10	

dose in NAT2 slow metabolizers (4 mg/kg) and increasing RIF dose (to 15 mg/kg) in subjects with 11	

loss of function in SLCO1B1.  12	

Presumably an increased RIF dose will be soon recommend for all patients indipendently from 13	

disease localization, if safety concerns will not be arisen from ongoing studies. In the meanwhile we 14	

also use a 15 mg/kg RIF dose in patients with TB meningitis and in those with low RIF Cmax 15	

concentrations (<8 µg/mL).  16	

Insufficient knowledge on treatment in pediatric population worths research investments in 17	

selecting the appropriate dose: in vivo to in vitro extrapolation modelling might be a promising 18	

option to study the PK in fragile and rapidly changing patients. 19	

Finally cellular and tissue pharmacology need to be assessed and new formulations explored (such 20	

the promising nanoformulations allowing for slow and/or targeted release of drugs) in order to tailor 21	

antitubercular treatment dose and duration to patients’ and disease characteristics. We believe this 22	

may be the future of antiTB pharmacology: the goal would be to have an imaging technique 23	

allowing us to estimate drug penetration in vivo. Positron emission tomographies may allow to 24	

identify zone in which tracer-associated drugs are insufficiently penetrating: this may inform 25	

clinical decisions such as dose increase, use of second-line drugs and even referral for surgical 26	
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removal of lesions. An integration of drugs’ plasma information with tissue specific PK/PD 1	

parameters could lead to optimization of existing drugs: physiologically based pharmacokinetic 2	

modelling is a promising field that may help designing informative trials. 3	

One of the challenging areas in understading PK/PD relationships of ATDs is the lack of early 4	

biomarkers for defining drug efficacy. While EBA is expensive and not related to  sterilizing 5	

activity other markers are under investigation such as sputum and urine molecular studies and 6	

whole blood bactericidal activity (WBA), but the description of this topic is beyond the scope of 7	

this review.  We envisage significant efforts in identifying cheap and sensitive early biomarkers of 8	

antymycobacterial activity and treatment response. 9	

Tuberculosis is a challenging infection for the long needed treatment, multidrug regimen and 10	

potential toxicities and drug interactions. Only with global initiative and collaborations between 11	

researchers the open issues may be resolved: in the future we will be able to administer to all 12	

affected subjects the right drug at the right dose for the righ patient. 13	

 14	
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 Rif Rfb Rpt Inh Etb Pza S 

Dose  600 mg 300 mg 600 mg 300 mg 25 mg/kg 25-35 

mg/kg 

15 mg/kg 

Binding 

protein [%] 

88.6 71-85 98 10-15 10-30 10-40 34 

Metabolism Hepatic 

deacetyla

tion, 

Autoindu

ction 

Hepatic 

deacetylat

ion, 

CYP3A 

Hepatic 

deacetylat

ion 

Acetylatio

n by 

NAT2 

10-15% 

hepatic, 

50-55% 

eliminate

d 

unchange

d 

 

Hepatic, 

3% 

excreted 

unchanged 

Eliminated 

29-89% 

unchanged 

Plasma half 

life [hours] 

3-4  25-36 15 1.5 fast 

acetylators 

4 slow 

acetylators 

 

2-4 10 3 

Parameter 

best 

predictive 

of 

activity[16]  

AUC/MI

C 

Cmax/MI

C 

AUC/MIC 

Cmax/MIC 

AUC/MIC 

Cmax/MIC 

 

AUC/MIC

> 

Cmax/MIC 

AUC/MIC AUC/MIC AUC/MIC 

Therapeutic 

range 

µg/ml[26] 

 

8-24 0.3-0.9 8-30 3-6 2-6 20-60 35-45 

Threshold 

associated 

with poor 

outcome[20

] 

 

AUC≤13 

mg*h/l 

AUC≤13 

mg*h/l 

N/A AUC≤52 

mg*h/l 

N/A AUC≤363 

mg*h/l 

N/A 

I/P 2-5 N/A N/A 1 10-20 <1[138] <1 
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 1	

Table 1 2	

Pharmacokinetic and pharmacodinamic properties of currently recommended antitubercular 3	

drugs. 4	

(Rif, rifampicin; Rfb, rifabutin; Rpt, rifapentine; Inh, isoniazid; Etb, ethambutol; Pza, 5	

pyrazinamide; S, streptomycin; AUC, Area Under the Curve; N/A, not assessed) 6	

  7	

ratio[136] 
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 1	

Table 2 2	

Pharmacokinetic and pharmacodinamic properties of principal second-line antitubercular 3	

drugs. 4	

(Lfx, levofloxacin; Mfx, moxifloxacin; Cs, cycloserine; PAS, para-aminosalicylic acid; Eto, 5	

ethionamide; Cfz, clofazimine; Lzd, linezolid; AUC, Area Under the Curve; N/A, not assessed) 6	

 Lfx Mfx Cs PAS Eto Cfz Lzd 

Dose  500-

1000 mg 

qd 

400 mg 10-15 

mg/kg 

 

4 gr bid 15-20 

mg/kg 

100 mg 600 mg 

Binding 

protein [%] 

24-38 30-50 <20% 50-60 30 No data 31 

Metabolism Minimall

y hepatic 

52% (N-

sulfate and 

acyl 

glucuronide 

conjugates) 

65% 

excreted 

unchang

ed. 35% 

hepatic 

Hepatic 

via 

acetylati

on 

Prodrug; 

Hepatic  

Hydrolytic 

dehalogenat

ion, 

deaminatio

n, 

hydration 

and 

glucuronida

tion[142]  

Minimally 

hepatic via 

oxidation 

Plasma half 

life  

9 hrs 7 hrs 7-10 hrs 0.75-1 2-9 hrs Up to 70 

days 

5-6 hrs 

Parameter 

best 

predictive 

of 

activity[16]  

AUC/MI

C better 

than 

Cmax/MI

C 

AUC/MIC 

better than 

Cmax/MIC 

N/A N/A N/A N/A T/MIC 

Therapeutic 

range 

µg/ml 

 

8-12[26] 3-5[26] 20-

35[26] 

20-

60[26] 

1-5[26] 0.5-4[26] 2-7 
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 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

 12	

 13	

 14	

 15	

 16	

 17	

Table 3 18	

Pharmacokinetic and pharmacodinamic properties of novel agents. 19	

(Bdq, bedaquiline; Dlm, delamanid; PA-824, pretomanid; AUC, Area Under the Curve; N/A, not 20	

assessed) 21	

 Bdq Dlm PA-824 

Dose  400 mg for 2 w 

then 200 mg 

3x/w 

100 mg bid 100 mg/200 mg 

Binding 

protein [%] 

99 99 95 

Metabolism Hepatic, via 

CYP3A4 

Hepatic Prodrug; hepatic 

 

Plasma half 

life [hours] 

24-30 30-38 16-20 

Parameter 

best 

predictive 

of 

activity[16]  

T/MIC AUC/MC T/MIC 

Therapeutic 

range 

µg/ml 

 

N/A N/A N/A 


