57 research outputs found

    Translating the Game: Ribosomes as Active Players

    Get PDF
    Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators

    Isolation of a Novel β4 Integrin-binding Protein (p27BBP) Highly Expressed in Epithelial Cells

    Get PDF
    The integrin beta4 has a long cytodomain necessary for hemidesmosome formation. A yeast two-hybrid screen using beta4 cytodomain uncovered a protein called p27(BBP) that represents a beta4 interactor. Both in yeast and in vitro, p27(BBP) binds the two NH2-terminal fibronectin type III modules of beta4, a region required for signaling and hemidesmosome formation. Sequence analysis of p27(BBP) revealed that p27(BBP) was not previously known and has no homology with any isolated mammalian protein, but 85% identical to a yeast gene product of unknown function. Expression studies by Northern analysis and in situ hybridization showed that, in vivo, p27(BBP) mRNA is highly expressed in epithelia and proliferating embryonic epithelial cells. An antibody raised against p27(BBP) COOH-terminal domain showed that all beta4-containing epithelial cell lines expressed p27(BBP). The p27(BBP) protein is insoluble and present in the intermediate filament pool. Furthermore, subcellular fractionation indicated the presence of p27(BBP) both in the cytoplasm and in the nucleus. Confocal analysis of cultured cells showed that part of p27(BBP) immunoreactivity was both nuclear and in the membrane closely apposed to beta4. These results suggest that the p27(BBP) is an in vivo interactor of beta4, possibly linking beta4 to the intermediate filament cytoskeleton

    Whole transcriptomic analysis of mesenchymal stem cells cultured in Nichoid micro-scaffolds

    Get PDF
    Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid’s capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration

    SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention

    Get PDF
    Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease

    Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1

    Get PDF
    Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next

    Selective ascorbate toxicity in malignant mesothelioma a redox trojan mechanism

    No full text
    We studied the mechanism of ascorbate toxicity in malignant mesothelioma (MMe) cells. Neutral red uptake showed that ascorbate, but not dehydroascorbate, was highly toxic in the MMe cell lines REN and MM98, and less toxic in immortalized (human mesothelial cells-htert) and primary mesothelial cells. Ascorbate transport inhibitors phloretin, sodium azide, and ouabain d id notreduce ascorbate toxicity. Ascorbate promoted the formation of H 2O2 in the cell medium, and its toxicity was suppressed by extracellular catalase, but the concentration of endogenous catalase washigher inMMecells than in normal cells.The confocalimaging of cells loaded with the dihydrhodamine 123 reactive oxygen species probe showed that ascorbate caused a strong increase of rhodamine fluorescence in MMe cells, but not in mesothelial cells. MMe cells showed a higher production of superoxide and NADPH oxidase (NOX)4 expression than did mesothelial cells. Two inhibitors of cellular superoxide sources (apocynin and rotenone) reduced ascorbate toxicity and the ascorbate-induced rise in rhodamine fluorescence. NOX4small interferingRNAalso reduced ascorbate toxicity in REN cells. Taken together, the data indicate that ascorbate-induced extracellular H2O2 production induces a strong oxidative stress in MMe cells because of their high rate of superoxide production. This explains the selective toxicity of ascorbate in MMe cells, and suggests its possible use in the clinical treatment of malignant mesothelioma
    • …
    corecore