2 research outputs found

    Single injection dual phase CBCT technique ameliorates results of trans-arterial chemoembolization for hepatocellular cancer

    Get PDF
    Cone-beam CT (CBCT) application to the field of trans-arterial chemoembolization has been recently the focus of several researches. This imaging modality is performed with a rotation of the C-arm around the patient, without needs of patient repositioning. Datasets are immediately processed, obtaining volumetric CT-like images with the possibility of post-processing and reconstruction of images. Dual phase CBCT recently introduced in clinical practice consists in a first arterial acquisition followed by a delayed acquisition corresponding to a venous phase. The introduction of this feature has overcome the limit of single-phase acquisitions, allowing lesions characterization. Moreover these recent advantages have several intra-procedural implications. Detailed technical and acquisition parameters will be widely exposed in this review with particular attention to: catheter positioning, acquisition delay, injection parameters, patient positioning and contrast dilution. Comparison with standard of practice second line imaging [multidetector computer tomography (MDCT) and MDCT/arteriography] demonstrate the capability of detecting occult nodules providing some clinical implications thus potentially identifying a sub set of patients with aggressive disease behaviour. Other intra-procedural advantages of dual phase CBCT usage consist in a better tumor feeder visualization, reduction of proper DSA and fluoroscopic time, suggestion the presence of an extrahepatic parasitic feeder thus resulting in a more accurate treatment. Finally, the volumetrical intraprocedural evaluation of accumulation of embolic agent has proved to be correlate with treatment response if compared with MRI

    Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia

    No full text
    Congenital diaphragmatic hernia (CDH) is a severe pediatric disorder with herniation of abdominal viscera into the thoracic cavity. Since neurodevelopmental impairment constitutes a common outcome, we performed morphometric magnetic resonance imaging (MRI) analysis on CDH infants to investigate cortical parameters such as cortical thickness (CT) and local gyrification index (LGI). By assessing CT and LGI distributions and their correlations with variables which might have an impact on oxygen delivery (total lung volume, TLV), we aimed to detect how altered perfusion affects cortical development in CDH. A group of CDH patients received both prenatal (i.e., fetal stage) and postnatal MRI. From postnatal high-resolution T2-weighted images, mean CT and LGI distributions of 16 CDH were computed and statistically compared to those of 13 controls. Moreover, TLV measures obtained from fetal MRI were further correlated to LGI. Compared to controls, CDH infants exhibited areas of hypogiria within bilateral fronto-temporo-parietal labels, while no differences were found for CT. LGI significantly correlated with TLV within bilateral temporal lobes and left frontal lobe, involving language- and auditory-related brain areas. Although the causes of neurodevelopmental impairment in CDH are still unclear, our results may suggest their link with altered cortical maturation and possible impaired oxygen perfusion
    corecore