5 research outputs found

    Additive manufactured microfluidic device for electrochemical detection of carbendazim in honey samples

    Get PDF
    The use of pesticides is one of the primary means of protecting crops. However, this class of compounds can be highly toxic to the environment and humans. In this aspect, developing analytical devices for monitoring pesticides such as carbendazim in food sources is of paramount importance. Thus, the present work presents the application of a paper-based microfluidic device coupled to an additive manufactured platform and electrochemical sensors (produced from lab-made conductive filaments based on carbon black) for the sustainable detection of carbendazim in honey samples. The microfluidic system presented satisfactory results for the analysis of carbendazim, in the linear range from 0.5 to 40.0 µmol L −1 with a LOD of 0.09 µmol L −1. The recovery test performed in honey samples showed values ranging between 92.4 and 108.8%. According to the results, the proposed microfluidic device demonstrated a good potential for detecting carbendazim in real samples, with the advantages of employing sustainable and renewable materials

    Dual-Target Additively Manufactured Electrochemical Sensor for the Multiplexed Detection of Protein A29 and DNA of Human Monkeypox Virus

    Get PDF
    Herein, we present the first 3D-printed electrochemical portable biodevice for the detection of monkeypox virus (MKPV). The electrochemical device consists of two biosensors: an immunosensor and a genosensor specifically designed for the detection of the protein A29 and a target DNA of MKPV, respectively. The electrodes were manufactured using lab-made ultraflexible conductive filaments composed of carbon black, recycled PLA from coffee pods, and castor oil as a plasticizer. The sensors created through 3D printing technology exhibited good reproducibility and repeatability of analytical responses. Furthermore, both the immunosensor and genosensor demonstrated excellent MKPV detection capabilities, with a linear range from 0.01 to 1.0 μmol L–1 for the antigen and 0.1 to 20.0 μmol L–1 for the DNA target. The biosensors achieved limits of detection of 2.7 and 29 nmol L–1 for the immunosensor and genosensor, respectively. Interference tests conducted with the biosensors demonstrated their selectivity for MKPV. Moreover, analyses of fortified human serum samples showed recoveries close to 100%, confirming the absence of significant matrix effects for MKPV analysis. Therefore, the 3D-printed multiplex device represents a viable and highly promising alternative for on-site, portable, and rapid point-of-care MKPV monitoring

    Glucocorticoid-Induced Leucine Zipper Alleviates Lung Inflammation and Enhances Bacterial Clearance during Pneumococcal Pneumonia

    No full text
    Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ−/−) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ−/− macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections
    corecore