93 research outputs found

    ProMEX ā€“ a mass spectral reference database for plant proteomics

    Get PDF
    The ProMEX database is one of the main collection of annotated tryptic peptides in plant proteomics. The main objective of the ProMEX database is to provide experimental MS/MS-based information for cell type-specific or sub-cellular proteomes in Arabidopsis thaliana, Medicago truncatula, Chlamydomonas reinhardtii, Lotus japonicus, Lotus corniculatus, Phaseolus vulgaris, Lycopersicon esculentum, Solanum tuberosum, Nicotiana tabacum, Glycine max, Zea mays, Bradyrhizobium japonicum, and Sinorhizobium meliloti. Direct links at the protein level to the most relevant databases are present in ProMEX. Furthermore, the spectral sequence information are linked to their respective pathways and can be viewed in pathway maps

    Sulfur Transport and Metabolism in Legume Root Nodules

    Get PDF
    Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil

    Differentiation of Plant Cells During Symbiotic Nitrogen Fixation

    Get PDF
    Nitrogen-fixing symbioses between legumes and bacteria of the family Rhizobiaceae involve differentiation of both plant and bacterial cells. Differentiation of plant root cells is required to build an organ, the nodule, which can feed and accommodate a large population of bacteria under conditions conducive to nitrogen fixation. An efficient vascular system is built to connect the nodule to the root, which delivers sugars and other nutrients to the nodule and removes the products of nitrogen fixation for use in the rest of the plant. Cells in the outer cortex differentiate to form a barrier to oxygen diffusion into nodules, which helps to produce the micro-aerobic environment necessary for bacterial nitrogenase activity. Cells of the central, infected zone of nodules undergo multiple rounds of endoreduplication, which may be necessary for colonisation by rhizobia and may enable enlargement and greater metabolic activity of these cells. Infected cells of the nodule contain rhizobia within a unique plant membrane called the peribacteroid or symbiosome membrane, which separates the bacteria from the host cell cytoplasm and mediates nutrient and signal exchanges between the partners. Rhizobia also undergo differentiation during nodule development. Not surprisingly, perhaps, differentiation of each partner is dependent upon interactions with the other. High-throughput methods to assay gene transcripts, proteins, and metabolites are now being used to explore further the different aspects of plant and bacterial differentiation. In this review, we highlight recent advances in our understanding of plant cell differentiation during nodulation that have been made, at least in part, using high-throughput methods

    ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last decade, techniques were established for the large scale genome-wide analysis of proteins, RNA, and metabolites, and database solutions have been developed to manage the generated data sets. The Golm Metabolome Database for metabolite data (GMD) represents one such effort to make these data broadly available and to interconnect the different molecular levels of a biological system <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. As data interpretation in the light of already existing data becomes increasingly important, these initiatives are an essential part of current and future systems biology.</p> <p>Results</p> <p>A mass spectral library consisting of experimentally derived tryptic peptide product ion spectra was generated based on liquid chromatography coupled to ion trap mass spectrometry (LC-IT-MS). Protein samples derived from <it>Arabidopsis thaliana</it>, <it>Chlamydomonas reinhardii</it>, <it>Medicago truncatula</it>, and <it>Sinorhizobium meliloti </it>were analysed. With currently 4,557 manually validated spectra associated with 4,226 unique peptides from 1,367 proteins, the database serves as a continuously growing reference data set and can be used for protein identification and quantification in uncharacterized biological samples. For peptide identification, several algorithms were implemented based on a recently published study for peptide mass fingerprinting <abbrgrp><abbr bid="B2">2</abbr></abbrgrp> and tested for false positive and negative rates. An algorithm which considers intensity distribution for match correlation scores was found to yield best results. For proof of concept, an LC-IT-MS analysis of a tryptic leaf protein digest was converted to mzData format and searched against the mass spectral library. The utility of the mass spectral library was also tested for the identification of phosphorylated tryptic peptides. We included <it>in vivo </it>phosphorylation sites of <it>Arabidopsis thaliana </it>proteins and the identification performance was found to be improved compared to genome-based search algorithms. Protein identification by ProMEX is linked to other levels of biological organization such as metabolite, pathway, and transcript data. The database is further connected to annotation and classification services via BioMoby.</p> <p>Conclusion</p> <p>The ProMEX protein/peptide database represents a mass spectral reference library with the capability of matching unknown samples for protein identification. The database allows text searches based on metadata such as experimental information of the samples, mass spectrometric instrument parameters or unique protein identifier like AGI codes. ProMEX integrates proteomics data with other levels of molecular organization including metabolite, pathway, and transcript information and may thus become a useful resource for plant systems biology studies. The ProMEX mass spectral library is available at <url>http://promex.mpimp-golm.mpg.de/</url>.</p

    A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed Beta vulgaris

    Get PDF
    Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet (Beta vulgaris) in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects

    Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean

    Get PDF
    Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NF

    Candidate pathogenicity factor/effector proteins of ā€˜Candidatus Phytoplasma solaniā€™ modulate plant carbohydrate metabolism, accelerate the ascorbateā€“glutathione cycle, and induce autophagosomes

    Get PDF
    The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ā€˜Candidiatus Phytoplasma solaniā€™ are unknown. Six putative pathogenicity factors/effectors from six different strains of ā€˜Ca. P. solaniā€™ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbateā€“glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbateā€“glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed
    • ā€¦
    corecore