11 research outputs found

    Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides

    Get PDF
    The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors

    Haematococcus: a successful air-dispersed colonist in ephemeral waters is rarelyfound in phytoplankton communities

    Get PDF
    In a literature search, the presence of Haematococcus in phytoplankton communities and its biogeography were investigated. Haematococcus, although showing a wide biogeographical distribution, has been rarely found in phytoplankton communities. Simultaneously, the colonization potential of air-dispersed Haematococcus in ephemeral waters and its interactions with coexisting phytoplankton taxa were examined by microscopy and molecular methods. Haematococcus was a successful colonist, appearing among the first taxa in the experimental containers. According to principal component analysis, Haematococcus growth rate was negatively correlated with the abundance and species richness of the other autotrophs. Furthermore, a negative correlation between Haematococcus and Chlamydomonas and a positive one between Haematococcus and Chlorella were found. Overall, Haematococcus appears to be an effective air-dispersed alga that can successfully colonize and establish populations in small ephemeral water bodies. However, its absence from phytoplankton in larger permanent water bodies could be related to its high light requirements, its competitive disadvantages against other algae, and the grazing pressures from predators. The results of our study suggest a life strategy based on adaptation to higher light intensities in very shallow waters compared with optical dense lakes. Therefore, ephemeral waters are the regular habitat for Haematococcus instead of being “stepping stones” for the colonization of lake phytoplankton

    Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments

    Get PDF
    Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6oC heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition towards pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa

    Diversity of taxon-specific traits of seasonally distinct unicellular eukaryotic assemblages in a eutrophic coastal area with marked plankton blooms

    No full text
    In this work, we focused on the functional characterization of unicellular eukaryotic assemblages that had previously been taxonomically characterized by 18S rRNA gene amplicon sequencing in a eutrophic coastal site with marked plankton blooms. Biological traits of different functional groups were assigned to the retrieved operational taxonomic units (OTUs). The traits included size, trophic strategy, the presence of spines, mucilage production, colony formation, motility, spore formation, and potential harmfulness. Functional diversity indices were calculated and compared to analogous taxonomic diversity indices, indicating a strong positive coupling of richness and dominance and a negative coupling of evenness, even at a low taxonomic resolution (at the family/genus/species level). Biological trait trade-offs and co-occurrences of specific traits were evident during the succession of plankton blooms. The trophic strategy dominating in the assemblages frequently alternated between autotrophy, mixotrophy, and a few recorded cases of parasitism. Given that there was no indication of nutrient limitation, we suggest that biotic pressures force marine eukaryotes to exploit narrow niches by adopting specific strategies/traits that favour their survival. These traits act by increasing resource acquisition potential and via predator avoidance. This leads to a unique succession of blooms in the system, characterized by adaptations of the bloom taxa that are a direct response to the preceding assemblage

    Response of a coastal Baltic Sea diatom-dominated phytoplankton community to experimental heat shock and changing salinity

    No full text
    Climate change has been altering the ocean environment, affecting as a consequence the biological communities including microorganisms. We performed a mesocosm experiment to test whether biodiversity loss caused by one stressor would influence plankton community sensitivity to a subsequent stressor, as envisioned in Vinebrooke's multiple stressor concept. A natural Baltic Sea diatom-dominated phytoplankton assemblage was used as a model system where we examined whether a preceding heat shock would affect the community's response to changing salinity. Initially, the community was treated by a short-term temperature increase of 6 °C, which resulted in a loss of species compared to the control. Thereafter, the control and the heat-shocked communities were subject to a salinity change (- 5 psu, control, + 5 psu). The species Skeletonema dohrnii, Thalassiosira anguste-lineata, Thalassiosira nordenskioeldii, Chaetoceros socialis and Ditylum brightwellii were major components of the control and heat-shocked assemblages (> 80% of the total biomass). We examined the effect on species composition and biodiversity (morphospecies and operational taxonomic units (OTUs) related to phytoplankton) and on phytoplankton biomass. In addition, we explored the single species response of five dominant diatoms on these environmental perturbations. Our results showed that increased salinity significantly reduced the OTUs richness both in the control and the less diverse heated community as well as the phytoplankton biomass in the heated community. On the other hand, decreased salinity significantly increased species richness and phytoplankton biomass in both communities and OTUs richness in the control community. The five dominant diatoms reached their highest biomass under decreased salinity and responded negatively to increased salinity (lower biomass than ambient salinity). Contrary to Vinebrooke's multiple stressor concept, there was no indication that the heat treatment had altered the community's sensitivity to the salinity stress in our study system

    Effects of heat shock and salinity changes on coastal Mediterranean phytoplankton in a mesocosm experiment

    No full text
    Decreasing biodiversity is projected as one of the most consistent effects of warming on marine microbial communities. It is predicted that low biodiversity will consequently influence the community sensitivity to additional environmental alterations. Mesocosms were used to study the response of natural Mediterranean phytoplankton communities (control and heat shock + 6 °C) to salinity variations (− 5psu, control, + 5psu). We examined the effect on species composition, species richness as well as phytoplankton biomass and resource use efficiency. Heat shock was coupled with decreased species richness (30 species in control community while 26 in heat shock) and slightly reduced phytoplankton biomass. Changes in salinity altered the phytoplankton species composition (dinoflagellates were absent in decreased salinity treatments) and significantly reduced the phytoplankton species richness. The phytoplankton biomass and the resource use efficiency also decreased with exception of the increased salinity treatment in the non-heated community. In general, decreased salinity had stronger negative effects compared to increased salinity as displayed by the lowest species richness and lowest phytoplankton biomass in those treatments. Most notably, we identified a synergistic negative effect of heat shock with increased/decreased salinity which can be attributed to the lower species richness and, thus, decreased stability in the heated community

    Effects of heat shock and salinity changes on coastal Mediterranean phytoplankton in a mesocosm experiment

    No full text
    Decreasing biodiversity is projected as one of the most consistent effects of warming on marine microbial communities. It is predicted that low biodiversity will consequently influence the community sensitivity to additional environmental alterations. Mesocosms were used to study the response of natural Mediterranean phytoplankton communities (control and heat shock + 6 °C) to salinity variations (− 5psu, control, + 5psu). We examined the effect on species composition, species richness as well as phytoplankton biomass and resource use efficiency. Heat shock was coupled with decreased species richness (30 species in control community while 26 in heat shock) and slightly reduced phytoplankton biomass. Changes in salinity altered the phytoplankton species composition (dinoflagellates were absent in decreased salinity treatments) and significantly reduced the phytoplankton species richness. The phytoplankton biomass and the resource use efficiency also decreased with exception of the increased salinity treatment in the non-heated community. In general, decreased salinity had stronger negative effects compared to increased salinity as displayed by the lowest species richness and lowest phytoplankton biomass in those treatments. Most notably, we identified a synergistic negative effect of heat shock with increased/decreased salinity which can be attributed to the lower species richness and, thus, decreased stability in the heated community

    Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece)

    No full text
    Highlights: • Airborne bacterial abundance, biomass and composition were studied in Thessaloniki. • The highest values of bacterial abundance were recorded during summer. • No significant seasonal differences were found between summer and winter. • Air temperature was found to significantly affect the airborne bacterial community. • The majority of OTUs were affiliated to taxa derived from soil and wastewater. Abstract: The abundance, biomass and the taxonomic composition of the total airborne bacterial communities in a coastal urban area of Northeastern Mediterranean Sea were examined. In total, 27 air samples were collected across three seasons from a sampling point of approximately 30 m altitude in the center of the city. The abundance and biomass were determined with the use of epifluorescent microscopy, while the taxonomic composition was characterized by next-generation sequencing methods. Overall, the highest values of bacterial abundance were recorded during summer, with values exceeding abundances recorded in other urban sites across Europe, reaching 41 × 104 cells m−3. Out of 6 core meteorological parameters, only air temperature was found to significantly affect the abundance and biomass of airborne bacteria. Concerning the taxonomic composition of the airborne bacterial community, the group of Proteobacteria was the most diverse, with 47% of the total number of OTUs belonging to them, followed by Firmicutes, Actinobacteria and Bacteroidetes. The most dominant OTU belonged to γ-Proteobacteria, and was closely affiliated to Pseudomonas sp., a taxon commonly found to actively participate in the formation of ice-nuclei in the atmosphere. Finally, 19 OTUs were shared between all seasons and were found to be among the most dominant overall. The majority of these OTUs were affiliated to genera from soil and wastewater origin, while several were affiliated to genera that include known or opportunistic pathogens. Yet, only rare OTUs were affiliated to taxa with possible marine origin (e.g. Synechococcus sp.). The results showed that the atmosphere of the study area harbors a diverse and abundant bacterial community

    Biotreatment of Poultry Waste Coupled with Biodiesel Production Using Suspended and Attached Growth Microalgal-Based Systems

    No full text
    Poultry litter extract (PLE) was treated using a microbial consortium dominated by the filamentous cyanobacterium Leptolyngbya sp. in synergy with heterotrophic microorganisms of the poultry waste. Laboratory- and pilot-scale experiments were conducted under aerobic conditions using suspended and attached growth photobioreactors. Different dilutions of the extract were performed, leading to different initial pollutant (nitrogen, phosphorus, dissolved chemical oxygen demand (d-COD), total sugars) concentrations. Significant nutrient removal rates, biomass productivity, and maximum lipid production were determined for all the systems examined. Higher d-COD, nitrogen, phosphorus, and total sugars removal were recorded in the attached growth reactors in both laboratory- (up to 94.0%, 88.2%, 97.4%, and 79.3%, respectively) and pilot-scale experiments (up to 82.0%, 69.4%, 81.0%, and 83.8%, respectively). High total biomass productivities were also recorded in the pilot-scale attached growth experiments (up to 335.3 mg L−1d−1). The produced biomass contained up to 19.6% lipids (w/w) on a dry weight basis, while the saturated and monounsaturated fatty acids accounted for more than 70% of the total fatty acids, indicating a potential biodiesel production system. We conclude that the processing systems developed in this work can efficiently treat PLE and simultaneously produce lipids suitable as feedstock in the biodiesel manufacture
    corecore