Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments

Natassa Stefanidou¹, Savvas Genitsaris^{1,2}, Juan Lopez-Bautista³, Ulrich Sommer^{4*} and Maria Moustaka-Gouni^{1*}

¹Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

²School of Economics, Business Administration & Legal Studies, International Hellenic University, 57001 Thermi, Greece

³Department of Biological Sciences, The University of Alabama, P.O. Box. 870345, Tuscaloosa, AL 35484-0345, USA

⁴Geomar Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany

*Corresponding Authors, Email addresses: usommer@geomar.de, mmustaka@bio.auth.gr

Keywords: coastal marine plankton, climate change, Illumina sequencing, 18S rRNA gene, cDNA, RNA/DNA ratio

Supplementary Tables

Supplementary Table 1: Annotated major trophic role and DNA-based and RNA-based OTUs number. Values for the Mediterranean experiment are shaded.

Super groups	Groups	Class	I	Number	of OTUs		Trophic role	References
			DNA	RNA	DNA	RNA		
	Apicomplexa		2	2	3	3	Parasites	Skovgaard, 2014
		Colpodea	0	1	0	1	Nano-grazers	
		Heterotrichea	1	1	5	1	Nano-grazers	
		Litostomatea	2	8	3	5	Parasites	
	Ciliophora	Oligohymenophorea	1	7	12	4	Nano-grazers/ Parasites	Lvnn 2008
	Chiophola	Phyllopharyngea	8	23	12	5	Nano-grazers/ Parasites	Lynn, 2000
Alveoletes		Prostomaton	0	5	-+	2	Nano grazora	
Aiveolates		Spirotrichee	20	70	00	2 52	Nano grazora	
		Spirotricitea	20	70	99	33	Nano-grazers	Charr and
							Miana grazara/	Shore 2007
	Dinophyceae		125	50	280	103	Minetropha	Sileii, 2007,
							witxotrophs	Hansen 2011
								Cuillan et al
	MALVs		13	9	38	21	Parasites	Guillou et al.,
								2008 Carallian Smith
Amoebozoa	Lobosa		3	7	4	18	Micro-grazers	cavailler- Smith
								Scheckenbach et
Apusozoa	Hilomonadea		1	6	2	3	Pico-grazers	21 2006
	Chlorophyta		81	16	50	67	Autotrophs	$\frac{a1.,2000}{\text{Not et al}}$
Archaonlastida	Chlorophyta		01	40	59	07	Autotrophs	Vokovama et
Alchaepiastiua	Rhodophyta		1	1	2	3	Autotrophs	
								Cavallier Smith
Excavata	Discoba		1	1	1	1	Pico-grazers	et al 2006
								Burki et al
	Centroheliozoa		4	4	10	31	Pico-grazers	2009
	Cryptophyta		0	1	3	1	Autotrophs/Mixotrophs	Not et al 2012
	Hantonhyta		38	92	31	33	Autotrophs/Mixotrophs	Not et al. 2012
	naptopnyta		50	12	51	55	Autonopiis/ Wixonopiis	Okamoto et al
Harcobia	Katablepharidophyta		2	4	1	0	Pico-grazers	2005
								Moreira et al
	Picobiliphyta		17	4	8	6	Pico-grazers	2014
								Boenigk et al
	Telonemia		7	53	6	7	Pico-grazers	2002
	Choanoflagellida			25	39	42	Pico-grazers	
	enounonugonidu	Ascomycota	39	55	42	130	Decomposers	
		Basidiomycota	36	58	12	00	Decomposers	
		Blastocladiomycota	0	1	1	0	Parasites	Richards et al
	Fungi	Chytridiomycota	14	16	16	15	Deregites	2015
Opisthokonta	rungi	Cirytildiolliyeota	14 5	2	10	15	Parasites	2013
		Cryptomycota	5	2	4	1	Decomposers	
		Entomophthoromycota	1	4	1	4	Decomposers	
		Mucoromycota	2	4	2	6	Decomposers	
	Mesomycetozoa		3	9	11	22	Parasites	Marshall et al.,
	5							2008
Rhizaria	Cercozoa		71	56	40	41	Parasites	Chantangsi et
			201	220	0.4	15	A	al., 2010
	Bacillariophyta		201	230	94	45	Autotrophs	Not et al., 2012
	Bicoecea		30	21	49	46	Pico-grazers	Boenigk et al.,
	D-1:4-1							2002
Stramenopiles	Bolidophyceae and		10	12	3	3	Autotrophs	Brown and
Stramenopics	relatives							Sornannus, 2010
	Chrysophyceae-		6	29	4	8	Autotrophs/Mixotrophs	Brown and
	Synurophyceae						· · · ·	Sorhannus, 2010
	Dictyochophyceae		15	12	10	6	Autotrophs	Brown and

						Sorhannus, 2010
Fustigmatonhyceae	2	1	0	4	Autotrophs	Brown and
Lustigniatophyceae	2	1	0	7	Autonopiis	Sorhannus, 2010
	<u>^</u>	0			-	Kramarsky-
Hyphochytriomyceta	0	0	3	1	Parasites	Winter et al.,
						2006
Labyrinthulea	22	20	108	38	Parasites	Ragnukumar,
						2002 Massana at al
MAST	60	29	27	15	Pico-grazers	
Oomvoeta	11	10	11	8	Parasites	Park et al 2004
Somyeeu	11	10	11	0	1 drusites	Brown and
Pelagophyceae	1	2	2	3	Autotrophs	Sorhannus, 2010
		0				Brown and
Phaeophyceae	3	0	0	1	Autotrophs	Sorhannus, 2010
Disarkasas	1	2	1	1	Minatuanha	Cavallier- Smith
Picopnagea	1	Z	1	1	Mixotrophs	et al., 2006
Direonio	2	1	Δ	14	Darasitas	Skovgaard,
 1 lisolila	5	4	4	14	1 alasites	2014
Ranhidonhyceae	2	1	1	0	Autotrophs	Brown and
Rupindopnyceue	2	1	*	0	/ uton opils	Sorhannus, 2010

Supplementary Table 2A: Total number of DNA-based OTUs and RNA-based reads of major taxonomic groups for each experiment. Values for the Mediterranean experiment are shaded.

		Ba	altic	Mediterranean	
		DNA	RNA	DNA	RNA
		OTUs	Reads	OTUs	Reads
	Dinophyceae	248	3824	403	48784
Alveolates	MALVs	31	123	60	1565
	Other Alveolates	90	64491	207	76590
Archeoplastida	Chlorophytes	139	2268	123	10039
Haraahia	Haptophytes	53	74696	64	21723
пагсовіа	Other Harcobia	82	16445	75	16593
Onisthesente	Fungi	275	25128	239	182643
Opistnoconta	Other Opisthoc.	49	2732	109	16073
Rhizaria	Cercozoa	117	6774	81	3473
Stromononilog	Bacillariophyceae	382	289044	178	16905
Stramenopries	Other Stramen.	360	24775	426	83368
Amoebozoa	Lobosa	3	1160	5	1416
Apusozoa	Hilomonadea	5	1127	4	189
Excavata	Discoba	4	10	1	2

Supplementary Table 2B: Total number of DNA-based OTUs and RNA-based reads of trophic groups for each experiment. Values for the Mediterranean experiment are shaded.

	B	altic	Mediterranean		
	DNA RNA		DNA	RNA	
Autotrophs	374	304766	129	76153	
Mixotrophs	40	74443	298	21268	
Decomposers	97	25128	114	180643	
Parasites	124	9077	212	43156	
Micrograzers	67	3486	70	7413	
Picograzers	166	95264	270	149458	

Supplementary Table 3: Ratios of auto- and mixo- trophic OTUs to heterotrophic OTUs (S_{auto}/S_{het} ratio) and auto- and mixo- trophic OTUs to consumers ($S_{auto}/S_{grazers+parasites}$ ratio) for each experiment. Values for the Mediterranean experiment are shaded.

Baltic	Mediterranean

	$S_{auto}/S_{grazers+parasites}$	S_{auto}/S_{het}	$S_{auto}/S_{grazers+parasites}$	S_{auto}/S_{het}
Ai	1.48	1.13	1.43	1.10
A_{f}	1.23	0.92	0.97	0.74
$A_{\rm f^+}$	1.17	0.91	1.49	1.21
A _f -	1.41	0.95	1.13	0.70
H_{i}	1.34	0.89	0.52	0.41
H_{f}	0.62	0.46	0.58	0.50
$H_{f^{+}}$	1.13	0.81	0.67	0.55
H _f -	1.99	1.01	0.62	0.49

Supplementary Table 4: Percentages of DNA-based and RNA-based abundant and rare OTUs for each experiment. Values for the Mediterranean experiment are shaded.

	DNA				RNA					
	Abundant OTUs %		Rare OTUs %		Abur	dant OTUs %	Rare OTUs %			
	Baltic	Mediterranean	Baltic	Mediterranean	Baltic	Baltic Mediterranean		Mediterranean		
A_i	3.7	4.6	87.6	82.7	3.3	4.9	92.0	82.3		
A_{f}	5.3	10.4	88.4	85.4	3.2	6.5	93.0	82.1		
$A_{f^{\!+\!}}$	10.2	10.9	84.2	77.4	2.3	5.3	94.5	82.6		
A _f -	8.0	8.9	84.5	81.7	2.8	6.3	91.5	86.2		
H_{i}	7.6	3.3	83.9	91.7	3.3	3.5	88.0	88.8		
H_{f}	4.1	5.2	86.8	87.4	1.5	6.5	88.7	81.3		
$H_{f^{+}}$	5.9	6.9	85.2	85.6	4.6	7.7	90.8	79.5		
H _f -	3.8	5.9	86.7	87.5	1.9	8.3	90.3	79.4		

References

Boenigk, J., Arndt, H. (2002). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Anton van Lee 81, 465-480.

Brown, J.W., Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5 (9), e12759.

Burki, F., Inagaki, Y., Bråte, J., Archibald, J.M., Keeling, P. J., Cavalier-Smith, T. et al. (2009). Large-scale phylogenetic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic Chromalveolates. Genome Biol Evol 1, 231-238.

Cavallier- Smith, T., Chao, E.Y.E. (2006). Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista). J Mol Evol 62, 388-420.

Chantangsi, C., Leander, B.S. (2010). An SSU rDNA barcoding approach to the diversity of marine interstitial cercozoans, including descriptions of four novel genera and nine novel species. Int J Syst Evol Microbiol 60, 1962-1977.

Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., Massana, R., et al. (2008). Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10, 3349-3365.

Hansen, P.J. (2011). The Role of Photosynthesis and Food Uptake for the Growth of Marine Mixotrophic Dinoflagellates. Eukaryot Microbiol 58, 203-214.

Kramarsky-Winter, E., Harel, M., Siboni, N., Ben Dov, E. Brickner, I., Loya, Y. et al. (2006). Identification of a protistcoral association and its possible ecological role. MEPS 317: 67-73.

Lynn, D. (2008). The ciliated protozoa: characterization, classification, and guide to the literature. New York: Springer.

Marshall, W.L., Celio, G., McLaughlin, D.J., Berbee, M.L. (2008). Multiple isolations of a culturable, motile Ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertabrate digestive tracts. Protist 159, 415-433.

Massana, R., Castresana, J., Balagué, V., Guillou, L., Romari, K., Groisillier, A. et al. (2004). Phylogenetic and Ecological Analysis of Novel Marine Stramenopiles. Appl Environ Microbiol 70 (6), 3528-3534.

Moreira, D. and López-García, P. (2014). The rise and fall of Picobiliphytes: How assumed autotrophs turned out to be heterotrophs. BioEssays 36, 468–474.

Not, F., Siano, R., Kooistra, W.H.C.F., Simon, N., Vaulot, D., Probert, I. (2012). Diversity and ecology of eukaryotic marine phytoplankton. In: Genomic insights into the biology of algae. Piganeau, ed. USA: Elsevier Chapter One, pp. 1-54.

Okamoto, N., Inouyen, I. (2005). The Katablepharids are a Distant Sister Group of the Cryptophyta: A Proposal for Katablepharidophyta Divisio Nova/Kathablepharida Phylum Novum Based on SSU rDNA and Beta-Tubulin Phylogeny. Protist 156, 163-179.

Park, M.G., Yih, W., Coats, D.W. (2004). Parasites and phytoplankton, with special emphasis on Dinoflagellate infections. *J Eukaryot Microbiol* 51, 45-155.

Raghukumar, S. (2002). Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38, 127-145.

Richards, T.A., Leonard, G., Mahé, F., del Campo, J., Romac, S., Jones, M.D.M. et al. (2015). Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282, 2015-2243.

Scheckenbach, F., Wylezich, C., Mylnikov, P.A., Weitere, M., Arndt, H. (2006). Molecular Comparisons of Freshwater and Marine Isolates of the Same Morphospecies of Heterotrophic Flagellates. Appl Environ Microbiol 72 (10), 6638-6643.

Sherr, B.F., Sherr, E.B., Caron, D.A., Vaulot, D., Worden, A.Z. (2007). Oceanic protists. Oceanography 20, 130-134.

Skovgaard, A. (2014). Dirty tricks in the plankton: diversity and role of marine parasitic protists. Acta Protozool 53, 51-62.

Yokoyama, A., Scott, J.L., Zuccarello, G.C., Kajikawa, M., Hara, Y., West, J.A. (2009). Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycol Res 57, 278-289.

Specimens

Supplementary Figure 1. Rarefaction curves of DNA and RNA samples in the Baltic experiment and in the Mediterranean experiment.

Baltic Sea

Supplementary Figure 2. Venn diagram showing the number of unique and shared DNA OTUs across the different salinities of A and H communities in the Baltic experiment and in the Mediterranean experiment. Af: ambient temperature and salinity, Af+: ambient temperature and high salinity (+5psu), Af-: ambient temperature and low salinity (-5psu), Hf: heat shock (+6oC) and ambient salinity Hf+: heat shock (+6oC) and high salinity (+5psu), Hf-: heat shock (+6oC) and low salinity (-5psu).

Baltic Sea

Meditteranean Sea

% rDNA

Supplementary Figure 3. Relative read abundance of RNA (y axis) and DNA (x axis) reads in the Baltic experiment and in the Mediterranean experiment. Data points represent the common OTUs in RNA and DNA datasets.

Taxonomic Groups

Supplementary Figure 4. Range of average RNA:DNA ratios for each taxonomic group in the Baltic experiment and in the Mediterranean experiment. Boxplots represent variation among the average RNA:DNA ratios in each treatment and whiskers denote minimum and maximum values.