340 research outputs found

    L´antropologia di Mario Vittorino

    Get PDF
    L'opera teologica di Mario Vittorino è stata oggetto di numerosi studi negli ultimi anni, tutti tendenti a dipanare le molte oscurità che già nel IV secolo un S. Gerolamo trovava nei suoi libri ', nonché a situare il retore nel panorama della patrìstica a lui contemporanea. Ritrovata la fonte filosofica greca nella speculazione porfiriana2 e sanate —in questo modo— molte delle lacune dei trattati antiariani, si è cercato di prestare attenzione alla sua opera di commentatore a S. Paolo, commentatore pionierìstico in quanto è il primo occidentale a concepire l'idea di commentare tutto il corpus paolino

    Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    Get PDF
    Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols

    Aggregation of the Acylphosphatase from Sulfolobus solfataricus: the folded and partially unfolded states can both be precursors for amyloid formation.

    Get PDF
    Protein aggregation is associated with a number of human pathologies including Alzheimer's and Creutzfeldt-Jakob diseases and the systemic amyloidoses. In this study, we used the acylphosphatase from the hyperthermophilic Archaea Sulfolobus solfataricus (Sso AcP) to investigate the mechanism of aggregation under conditions in which the protein maintains a folded structure. In the presence of 15-25% (v/v) trifluoroethanol, Sso AcP was found to form aggregates able to bind specific dyes such as thioflavine T, Congo red, and 1-anilino-8-naphthalenesulfonic acid. The presence of aggregates was confirmed by circular dichroism and dynamic light scattering. Electron microscopy revealed the presence of small aggregates generally referred to as amyloid protofibrils. The monomeric form adopted by Sso AcP prior to aggregation under these conditions retained enzymatic activity; in addition, folding was remarkably faster than unfolding. These observations indicate that Sso AcP adopts a folded, although possibly distorted, conformation prior to aggregation. Most important, aggregation appeared to be 100-fold faster than unfolding under these conditions. Although aggregation of Sso AcP was faster at higher trifluoroethanol concentrations, in which the protein adopted a partially unfolded conformation, these findings suggest that the early events of amyloid fibril formation may involve an aggregation process consisting of the assembly of protein molecules in their folded state. This conclusion has a biological relevance as globular proteins normally spend most of their lifetime in folded structures

    Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement

    Get PDF
    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption as well as the pollutant emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln’s components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption, emissions and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner

    Investigating the Effects of Mutations on Protein Aggregation in the Cell

    Get PDF
    The conversion of peptides and proteins into highly ordered and intractable aggregates is associated with a range of debilitating human diseases and represents a widespread problem in biotechnology. Protein engineering studies carried out in vitro have shown that mutations promote aggregation when they either destabilize the native state of a globular protein or accelerate the conversion of unfolded or partially folded conformations into oligomeric structures. We have extended such studies to investigate protein aggregation in vivo where a number of additional factors able to modify dramatically the aggregation behavior of proteins are present. We have expressed, in Escherichia coli cells, an E. coli protein domain, HypF-N. The results for a range of mutational variants indicate that although mutants with a conformational stability similar to that of the wild-type protein are soluble in the E. coli cytosol, variants with single point mutations predicted to destabilize the protein invariably aggregate after expression. We show, however, that aggregation of destabilized variants can be prevented by incorporating multiple mutations designed to reduce the intrinsic propensity of the polypeptide chain to aggregate; in the cases discussed here, this is achieved by an increase in the net charge of the protein. These results suggest that the principles being established to rationalize aggregation behavior in vitro have general validity for situations in vivo where aggregation has both biotechnological and medical relevance
    • …
    corecore