50 research outputs found

    Weiche Materie – Treffpunkt von Physik, Chemie und Biologie

    Get PDF

    Glasses of dynamically asymmetric binary colloidal mixtures: Quiescent properties and dynamics under shear

    Get PDF
    We investigate mixing effects on the glass state of binary colloidal hard-sphere-like mixtures with large size asymmetry, at a constant volume fraction phi = 0.61. The structure, dynamics and viscoelastic response as a function of mixing ratio reflect a transition between caging by one or the other component. The strongest effect of mixing is observed in systems dominated by caging of the large component. The possibility to pack a large number of small spheres in the free volume left by the large ones induces a pronounced deformation of the cage of the large spheres, which become increasingly delocalised. This results in faster dynamics and a strong reduction of the elastic modulus. When the relative volume fraction of small spheres exceeds that of large spheres, the small particles start to form their own cages, slowing down the dynamics and increasing the elastic modulus of the system. The large spheres become the minority and act as an impurity in the ordering beyond the first neighbour shell, i.e. the cage, and do not directly affect the particle organisation on the cage level. In such a system, when shear at constant rate is applied, melting of the glass is observed due to facilitated out-of-cage diffusion which is associated with structural anisotropy induced by shear.Comment: 8 pages, 7 figures, Proceedings of the 4th International Symposium on Slow Dynamics in Complex Systems, Sendai, 2-7 December 201

    Different scenarios of dynamic coupling in glassy colloidal mixtures

    Get PDF
    Colloidal mixtures represent a versatile model system to study transport in complex environments. They allow for a systematic variation of the control parameters, namely size ratio, total volume fraction and composition. We study the effects of these parameters on the dynamics of dense suspensions using molecular dynamics simulations and differential dynamic microscopy experiments. We investigate the motion of the small particles through the matrix of large particles as well as the motion of the large particles. A particular focus is on the coupling of the collective dynamics of the small and large particles and on the different mechanisms leading to this coupling. For large size ratios, about 1:5, and an increasing fraction of small particles, the dynamics of the two species become increasingly coupled and reflect the structure of the large particles. This is attributed to the dominant effect of the large particles on the motion of the small particles which is mediated by the increasing crowding of the small particles. Furthermore, for moderate size ratios, about 1:3, and sufficiently high fractions of small particles, mixed cages are formed and hence the dynamics are also strongly coupled. Again, the coupling becomes weaker as the fraction of small particles is decreased. In this case, however, the collective intermediate scattering function of the small particles shows a logarithmic decay corresponding to a broad range of relaxation times

    Swelling and shrinking kinetics of a lamellar gel phase

    Get PDF
    We investigate the swelling and shrinking of L_beta lamellar gel phases composed of surfactant and fatty alcohol after contact with aqueous poly(ethylene-glycol) solutions. The height change Δh(t)\Delta h(t) is diffusion-like with a swelling coefficient, S: Δh=St\Delta h = S \sqrt{t}. On increasing polymer concentration we observe sequentially slower swelling, absence of swelling, and finally shrinking of the lamellar phase. This behavior is summarized in a non-equilibrium diagram and the composition dependence of S quantitatively described by a generic model. We find a diffusion coefficient, the only free parameter, consistent with previous measurements.Comment: 3 pages, 4 figures to appear in Applied Physics Letter
    corecore