31 research outputs found

    A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    Get PDF
    Albaum S, Hahne H, Otto A, et al. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study. Proteome Science. 2011;9(1): 30.Background: Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results: Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1) which proteins are differentially regulated regarding the selected experimental conditions, and 2) are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions: This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis [1,2] and Corynebacterium glutamicum [3]. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE [4]. Results can be found at http://qupe.cebitec.uni-bielefeld.de webcite

    Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example

    Get PDF
    Neuweger H, Persicke M, Albaum S, et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Systems Biology. 2009;3(1): 82.Background: The rapid progress of post-genomic analyses, such as transcriptomics, proteomics, and metabolomics has resulted in the generation of large amounts of quantitative data covering and connecting the complete cascade from genotype to phenotype for individual organisms. Various benefits can be achieved when these ''Omics'' data are integrated, such as the identification of unknown gene functions or the elucidation of regulatory networks of whole organisms. In order to be able to obtain deeper insights in the generated datasets, it is of utmost importance to present the data to the researcher in an intuitive, integrated, and knowledge-based environment. Therefore, various visualization paradigms have been established during the last years. The visualization of ''Omics'' data using metabolic pathway maps is intuitive and has been applied in various software tools. It has become obvious that the application of web-based and user driven software tools has great potential and benefits from the use of open and standardized formats for the description of pathways. Results: In order to combine datasets from heterogeneous ''Omics'' sources, we present the web-based ProMeTra system that visualizes and combines datasets from transcriptomics, proteomics, and metabolomics on user defined metabolic pathway maps. Therefore, structured exchange of data with our ''Omics'' applications Emma 2, Qupe and MeltDB is employed. Enriched SVG images or animations are generated and can be obtained via the user friendly web interface. To demonstrate the functionality of ProMeTra, we use quantitative data obtained during a fermentation experiment of the L-lysine producing strain Corynebacterium glutamicum DM1730. During fermentation, oxygen supply was switched off in order to perturb the system and observe its reaction. At six different time points, transcript abundances, intracellular metabolite pools, as well as extracellular glucose, lactate, and L-lysine levels were determined. Conclusion: The interpretation and visualization of the results of this complex experiment was facilitated by the ProMeTra software. Both transcriptome and metabolome data were visualized on a metabolic pathway map. Visual inspection of the combined data confirmed existing knowledge but also delivered novel correlations that are of potential biotechnological importance

    RNA-protein correlation of liver toxicity markers in HepaRG cells

    Get PDF
    The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers advantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human hepatoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungicides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells

    Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii

    Get PDF
    Toepel J, Albaum S, Arvidsson S, et al. Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC Genomics. 2011;12(1): 579.ABSTRACT: BACKGROUND: Chlamydomonas reinhardtii is widely accepted as a model organism regarding photosynthesis, circadian rhythm, cell mobility, phototaxis, and biotechnology. The complete annotation of the genome allows transcriptomic studies, however a new microarray platform was needed. Based on the completed annotation of Chlamydomonas reinhardtii a new microarray on an Agilent platform was designed using an extended JGI 3.1 genome data set which included 15000 transcript models. RESULTS: In total 44000 probes were determined (3 independent probes per transcript model) covering 93% of the transcriptome. Alignment studies with the recently published AUGUSTUS 10.2 annotation confirmed 11000 transcript models resulting in a very good coverage of 70% of the transcriptome (17000). Following the estimation of 10000 predicted genes in Chlamydomonas reinhardtii our new microarray, nevertheless, covers the expected genome by 90-95%. CONCLUSIONS: To demonstrate the capabilities of the new microarray, we analyzed transcript levels for cultures grown under nitrogen as well as sulfate limitation, and compared the results with recently published microarray and RNA-seq data. We could thereby confirm previous results derived from data on nutrient-starvation induced gene expression of a group of genes related to protein transport and adaptation of the metabolism as well as genes related to efficient light harvesting, light energy distribution and photosynthetic electron transport

    EDGAR: A software framework for the comparative analysis of prokaryotic genomes

    Get PDF
    Blom J, Albaum S, Doppmeier D, et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 2009;10(1): 154.Background:The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results: To support these studies EDGAR – ''Efficient Database framework for comparative Genome Analyses using BLAST score Ratios'' – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion: EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface http://edgar.cebitec.uni-bielefeld.de webcite, where the precomputed data sets can be browsed

    Flexible metagenome analysis using the MGX framework

    No full text
    Abstract Background The characterization of microbial communities based on sequencing and analysis of their genetic information has become a popular approach also referred to as metagenomics; in particular, the recent advances in sequencing technologies have enabled researchers to study even the most complex communities. Metagenome analysis, the assignment of sequences to taxonomic and functional entities, however, remains a tedious task: large amounts of data need to be processed. There are a number of approaches addressing particular aspects, but scientific questions are often too specific to be answered by a general-purpose method. Results We present MGX, a flexible and extensible client/server-framework for the management and analysis of metagenomic datasets; MGX features a comprehensive set of adaptable workflows required for taxonomic and functional metagenome analysis, combined with an intuitive and easy-to-use graphical user interface offering customizable result visualizations. At the same time, MGX allows to include own data sources and devise custom analysis pipelines, thus enabling researchers to perform basic as well as highly specific analyses within a single application. Conclusions With MGX, we provide a novel metagenome analysis platform giving researchers access to the most recent analysis tools. MGX covers taxonomic and functional metagenome analysis, statistical evaluation, and a wide range of visualizations easing data interpretation. Its default taxonomic classification pipeline provides equivalent or superior results in comparison to existing tools

    Omics Fusion – A Platform for Integrative Analysis of Omics Data

    No full text
    We present Omics Fusion, a new web-based platform for integrative analysis of omics data. Omics Fusion provides a collection of new and established tools and visualization methods to support researchers in exploring omics data, validating results or understanding how to adjust experiments in order to make new discoveries. It is easily extendible and new visualization methods are added continuously. It is available for free under: https://fusion.cebitec.uni-bielefeld.de

    EDGAR: A software framework for the comparative analysis of prokaryotic genomes

    No full text
    Abstract Background The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results To support these studies EDGAR – "Efficient Database framework for comparative Genome Analyses using BLAST score Ratios" – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface http://edgar.cebitec.uni-bielefeld.de, where the precomputed data sets can be browsed.</p
    corecore