35 research outputs found

    Strength training in elderly people improves static balance

    Get PDF
    Aim of this study was to investigate the effects of two different types of strength training programs on static balance in elderly subjects. Subjects older than 65 years of age were enrolled and assigned to control group (CG, n =19), electrical stimulation group (ES, n = 27) or leg press group (LP, n = 28). Subjects in both the training groups were exposed to training (2-3x/week) for a period of 9 weeks. In the ES group the subjects received neuromuscular electrical stimulation of the anterior thigh muscles. In the LP group the subjects performed strength training on a computer-controlled leg press machine. Before and after the training period, static balance of the subject was tested using a quiet stance task. Average velocity, amplitude and frequency of the center-of-pressure (CoP) were calculated from the acquired force plate signal. The data was statistically tested with analysis of (co)variance and t-tests. The three groups of subjects showed statistically significant differences (p < 0.05) regarding the pre-training vs. post-training changes in CoP velocity, amplitude and frequency. The differences were more pronounced for CoP velocity and amplitude, while they were less evident in case of mean frequency. The mean improvements were higher in the LP group than in the ES group. Our results provide supportive evidence to the existence of the strength-balance relationship. Additionally, results indicate the role of recruiting central processes and activation of functional kinetic chains for the better end effec

    Reliability of novel postural sway task test

    Get PDF
    The purpose of this study was to examine the reliability of parameters obtained from a novel postural sway task test based on body movements controlled by visual feedback. Fifty-nine volunteers were divided into two groups. The first group consisted of young (n = 32, 16 females and 16 males, age: 25.2 3.4 years) and the second group of elderly individuals (n = 27, 17 females and 10 males, age: 75.7 6.9 years). Participants stood in parallel on a computer based stabilographic platform with the feet approximately a shoulder width apart, the toes slightly pointing outwards, the hands placed on the hips. The computer screen was placed approximately 1.5 meter from the platform at a height of subjects eyes. An instantaneous visual feedback of participants centre of pressure (COP) was given in a form of a blue cross visible on the screen. Participants were instructed to keep the blue cross driven by movements of their hips as close as possible to a predefined curve flowing on the screen. Out of the 6 parameters studied, only the average distance of COP from the curve line and the sum of the COP crossings through the curve line showed high reliability. Correlation between these two highly reliable parameters was -0.89. There was also a statistical difference (p<0.001) between young and elderly in both the average distance of COP from the curve line and the sum of the COP crossings through the curve. To conclude, the novel postural sway task provides a simple tool with relatively low time burden needed for testing. The suggested output parameters measured are highly reliable and easy to interpre

    Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Get PDF
    Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test) with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session). Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers

    Evidence based medicine in physical medicine and rehabilitation (English version)

    Get PDF
    In the last twenty years the term “Evidence Based Medicine (EBM)” has spread into all areas of medicine and is often used for decision-making in the medical and public health sector. It is also used to verify the significance and/or the effectiveness of different therapies. The definition of EBM is to use the physician’s individual expertise, the patient’s needs and the best external evidence for each individual patient. Today, however, the term EBM is often wrongly used as a synonym for best “external evidence”. This leads not only to a misuse of evidence based medicine but suggests a fundamental misunderstanding of the model which was created by Gordon Guyatt, David Sackett and Archibald Cochrane. This problem becomes even greater the more social insurance institutions, public healthcare providers and politicians use external evidence alone as a main guideline for financing therapies in physical medicine and general rehabilitation without taking into account the physician’s expertise and the patient’s needs.The wrong interpretation of EBM can lead to the following problems: well established clinical therapies are either questioned or not granted and are therefore withheld from patients (for example physical pain management). Absence of evidence for individual therapy methods does not prove their ineffectiveness! In this short statement the significance of EBM in physical medicine and general rehabilitation will be analysed and discussed

    Long-term high-level exercise promotes muscle reinnervation with age.

    Get PDF
    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging
    corecore