29 research outputs found

    Strength training in elderly people improves static balance

    Get PDF
    Aim of this study was to investigate the effects of two different types of strength training programs on static balance in elderly subjects. Subjects older than 65 years of age were enrolled and assigned to control group (CG, n =19), electrical stimulation group (ES, n = 27) or leg press group (LP, n = 28). Subjects in both the training groups were exposed to training (2-3x/week) for a period of 9 weeks. In the ES group the subjects received neuromuscular electrical stimulation of the anterior thigh muscles. In the LP group the subjects performed strength training on a computer-controlled leg press machine. Before and after the training period, static balance of the subject was tested using a quiet stance task. Average velocity, amplitude and frequency of the center-of-pressure (CoP) were calculated from the acquired force plate signal. The data was statistically tested with analysis of (co)variance and t-tests. The three groups of subjects showed statistically significant differences (p < 0.05) regarding the pre-training vs. post-training changes in CoP velocity, amplitude and frequency. The differences were more pronounced for CoP velocity and amplitude, while they were less evident in case of mean frequency. The mean improvements were higher in the LP group than in the ES group. Our results provide supportive evidence to the existence of the strength-balance relationship. Additionally, results indicate the role of recruiting central processes and activation of functional kinetic chains for the better end effec

    Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Get PDF
    Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test) with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session). Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers

    Evidence based medicine in physical medicine and rehabilitation (English version)

    Get PDF
    In the last twenty years the term “Evidence Based Medicine (EBM)” has spread into all areas of medicine and is often used for decision-making in the medical and public health sector. It is also used to verify the significance and/or the effectiveness of different therapies. The definition of EBM is to use the physician’s individual expertise, the patient’s needs and the best external evidence for each individual patient. Today, however, the term EBM is often wrongly used as a synonym for best “external evidence”. This leads not only to a misuse of evidence based medicine but suggests a fundamental misunderstanding of the model which was created by Gordon Guyatt, David Sackett and Archibald Cochrane. This problem becomes even greater the more social insurance institutions, public healthcare providers and politicians use external evidence alone as a main guideline for financing therapies in physical medicine and general rehabilitation without taking into account the physician’s expertise and the patient’s needs.The wrong interpretation of EBM can lead to the following problems: well established clinical therapies are either questioned or not granted and are therefore withheld from patients (for example physical pain management). Absence of evidence for individual therapy methods does not prove their ineffectiveness! In this short statement the significance of EBM in physical medicine and general rehabilitation will be analysed and discussed

    Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence

    Get PDF
    Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging

    FES Training in Aging: interim results show statistically significant improvements in mobility and muscle fiber size

    Get PDF
    Aging is a multifactorial process that is characterized by decline in muscle mass and performance. Several factors, including reduced exercise, poor nutrition and modified hormonal metabolism, are responsible for changes in the rates of protein synthesis and degradation that drive skeletal muscle mass reduction with a consequent decline of force generation and mobility functional performances. Seniors with normal life style were enrolled: two groups in Vienna (n=32) and two groups in Bratislava: (n=19). All subjects were healthy and declared not to have any specific physical/disease problems. The two Vienna groups of seniors exercised for 10 weeks with two different types of training (leg press at the hospital or home-based functional electrical stimulation, h-b FES). Demografic data (age, height and weight) were recorded before and after the training period and before and after the training period the patients were submitted to mobility functional analyses and muscle biopsies. The mobility functional analyses were: 1. gait speed (10m test fastest speed, in m/s); 2. time which the subject needed to rise from a chair for five times (5x Chair-Rise, in s); 3. Timed &ndash;Up-Go- Test, in s; 4. Stair-Test, in s; 5. isometric measurement of quadriceps force (Torque/kg, in Nm/kg); and 6. Dynamic Balance in mm. Preliminary analyses of muscle biopsies from quadriceps in some of the Vienna and Bratislava patients present morphometric results consistent with their functional behaviors. The statistically significant improvements in functional testings here reported demonstrates the effectiveness of h-b FES, and strongly support h-b FES, as a safe home-based method to improve contractility and performances of ageing muscles

    Autophagy Impairment in Muscle Induces Neuromuscular Junction Degeneration and Precocious Aging

    Get PDF
    The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy
    corecore