40 research outputs found

    The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach

    Get PDF
    Climate shocks to food systems have been thoroughly researched in terms of food security and supply chain management. However, sparse research exists on the dependent nature of climate shocks on food-producing breadbasket regions and their subsequent cascading impacts. In this paper, we propose that a copula approach, combined with a multilayer network and an agent-based model, can give important insights on how tail-dependent shocks can impact food systems. We show how such shocks can potentially cascade within a region through the behavioral interactions of various layers. Based on our suggested framework, we set up a model for India and show that risks due to drought events multiply if tail dependencies during extremes drought is explicitly taken into account. We further demonstrate that the risk is exacerbated if displacement also takes place. In order to quantify the spatial–temporal evolution of climate risks, we introduce a new measure of multilayer vulnerability that we term Vulnerability Rank or VRank. We find that with higher food production losses, the number of agents that are affected increases nonlinearly due to cascading effects in different network layers. These effects spread to the unaffected regions via large-scale displacement causing sudden changes in production, employment and consumption decisions. Thus, demand shifts also force supply-side adjustments of food networks in the months following the climate shock. We suggest that our framework can provide a more accurate picture of food security-related systemic risks caused by multiple breadbasket failures which, in turn, can better inform risk management and humanitarian aid strategies

    Social tipping points and adaptation limits in the context of systemic risk : Concepts, models and governance

    Get PDF
    Funding Information: SJ acknowledges the funding from the Finnish Academy, grant no 329239. TF is thankful to the support from the European Research Council (ERC) project #758014 under the European Union's Horizon 2020 Research and Innovation Program, and from the Netherlands Organization for Scientific Research (NWO) project #191.015. Publisher Copyright: Copyright © 2022 Juhola, Filatova, Hochrainer-Stigler, Mechler, Scheffran and Schweizer.Physical tipping points have gained a lot of attention in global and climate change research to understand the conditions for system transitions when it comes to the atmosphere and the biosphere. Social tipping points have been framed as mechanisms in socio-environmental systems, where a small change in the underlying elements or behavior of actors triggers a large non-linear response in the social system. With climate change becoming more acute, it is important to know whether and how societies can adapt. While social tipping points related to climate change have been associated with positive or negative outcomes, overstepping adaptation limits has been linked to adverse outcomes where actors' values and objectives are strongly compromised. Currently, the evidence base is limited, and most of the discussion on social tipping points in climate change adaptation and risk research is conceptual or anecdotal. This paper brings together three strands of literature - social tipping points, climate adaptation limits and systemic risks, which so far have been separate. Furthermore, we discuss methods and models used to illustrate the dynamics of social and adaptation tipping points in the context of cascading risks at different scales beyond adaptation limits. We end with suggesting that further evidence is needed to identify tipping points in social systems, which is crucial for developing appropriate governance approaches.Peer reviewe

    The 3rd Global Summit of Research Institutes for Disaster Risk Reduction: Expanding the Platform for Bridging Science and Policy Making

    Get PDF
    The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute, Kyoto University, Japan, 19–21 March, 2017. The Global Alliance seeks to contribute to enhancing disaster risk reduction (DRR) and disaster resilience through the collaboration of research organizations around the world. The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster Risk Reduction 2015–2030 and its Science and Technology Roadmap. The summit reflected the international nature of collaborative research and action. A pre-conference questionnaire filled out by Global Alliance members identified 323 research projects that are indicative of current research. These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action. Four discussion sessions focused on research that aims to deepen the understanding of disaster risks. Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance, resilience, and recovery. Discussion summaries were presented in plenary sessions in support of outcomes for widely enhancing the science and policy of DRR

    The Risk and Policy Space for Loss and Damage: Integrating Notions of Distributive and Compensatory Justice with Comprehensive Climate Risk Management

    Get PDF
    The Warsaw Loss and Damage Mechanism holds high appeal for complementing actions on climate change adaptation and mitigation, and for delivering needed support for tackling intolerable climate related-risks that will neither be addressed by mitigation nor by adaptation. Yet, negotiations under the UNFCCC are caught between demands for climate justice, understood as compensation, for increases in extreme and slow-onset event risk, and the reluctance of other parties to consider Loss and Damage outside of an adaptation framework. Working towards a jointly acceptable position we suggest an actionable way forward for the deliberations may be based on aligning comprehensive climate risk analytics with distributive and compensatory justice considerations. Our proposed framework involves in a short-medium term, needs-based perspective support for climate risk management beyond countries ability to absorb risk. In a medium-longer term, liability-based perspective we particularly suggest to consider liabilities attributable to anthropogenic climate change and associated impacts. We develop the framework based on principles of need and liability, and identify the policy space for Loss and Damage as composed of curative and transformative measures. Transformative measures, such as managed retreat, have already received attention in discussions on comprehensive climate risk management. Curative action is less clearly defined, and more contested. Among others, support for a climate displacement facility could qualify here. For both sets of measures, risk financing (such as ‘climate insurance’) emerges as an entry point for further policy action, as it holds potential for both risk management as well as compensation functions. To quantify the Loss and Damage space for specific countries, we suggest as one option to build on a risk layering approach that segments risk and risk interventions according to risk tolerance. An application to fiscal risks in Bangladesh and at the global scale provides an estimate of countries’ financial support needs for dealing with intolerable layers of flood risk. With many aspects of Loss and Damage being of immaterial nature, we finally suggest that our broad risk and justice approach in principle can also see application to issues such as migration and preservation of cultural heritage

    D1.2 Handbook of multi-hazard, multi-risk definitions and concepts

    Get PDF
    This report is the first output of Work Package 1: Diagnosis of the MYRIAD-EU project: Handbook of Multi-hazard, Multi-Risk Definitions and Concepts. The aim of the task was to (i) acknowledge the differences and promote consistency in understanding across subsequent work packages in the MYRIAD-EU project, (ii) improve the accessibility of our work to a broad array of stakeholders and (iii) strengthen consensus across the hazard and risk community through a common understanding of multi-hazard, multi-risk terminology and concepts. The work encompassed a mixed-methods approach, including internal consultations and data-generating exercises; literature reviews; external stakeholder engagement; adopting and building on a rich existing body of established glossaries. 140 terms are included in the glossary, 102 related to multi-hazard, multi-risk, disaster risk management and an additional 38 due to their relevance to the project, acknowledging the need for a common understanding amongst an interdisciplinary project consortium. We also include extended definitions related to concepts particularly of relevance to this project deliverable, including ‘multi-hazard’, ‘hazard interrelationships’, ‘multi-risk’ and ‘direct and indirect loss and risk’. Underpinned by a literature review and internal consultation, we include a specific section on indicators, how these might be applied within a multi-hazard and multi-risk context, and how existing indicators could be adapted to consider multi-risk management. We emphasise that there are a number of established glossaries that the project (and risk community) should make use of to strengthen the impact of the work we do, noting in our literature review a tendency in papers and reports to define words afresh. We conclude the report with a selection of key observations, including terminology matters – for all aspects of disaster risk management, for example communication, data collection, measuring progress and reporting against Sendai Framework targets. At the same time, we discuss when is it helpful to include ‘multi-‘ as a prefix, questioning whether part of the paradigm shift needed to successfully address complex challenges facing an interconnected world is through inherently seeing vulnerability, exposure and disaster risk through the lens of multiple, interrelated hazards. We emphasise that there is likely to be an evolution of the terminology throughout the project lifetime as terms are emerge or shift as the project evolves. Finally, we propose a roadmap for developing and testing draft multi-risk indicators in MYRIAD-EU. The WP1 team would like to acknowledge all the contributions of the consortium on this task and the feedback from the External Advisory Board, in particular the chair of the board Virginia Murray, Head of Global Disaster Risk Reduction at the UK Health Security Agency, and the contribution of Jenty Kirsch-Wood, Head of Global Risk Management and Reporting at UNDRR, for her reflections on the findings of this work

    Challenges of instruments that should tackle multi-hazard and multi-risk situations: an assessment of the recent reforms of the European Solidarity Fund and the Solidarity and Emergency Aid Reserve

    No full text
    The European Union has some dedicated tools and mechanisms available to respond to natural hazard events including the European Union Solidarity Fund (EUSF). It follows the objective of granting financial assistance to Member States in the event of a major disaster with serious consequences. In the latest EU long-term budget plan—the Multiannual Financial Framework 2021–2027—the EUSF was merged with the Emergency Aid Reserve (EAR) to form the new Solidarity and Emergency Aid Reserve (SEAR). One additional significant change was made in 2020 which saw an extension of the scope of the EUSF. This extension allowed the EUSF to cover losses incurred due to major public health emergencies such as the COVID-19 pandemic. It is therefore now a multi-hazard and multi-risk financing instrument designed to financially assist during the emergency phase in case of an emergency event. We assess the consequences of these changes in the light of potential advantages as well as disadvantages compared to the prior EUSF structure. The results will be used to provide some policy recommendations as to how to move forward with the identified challenges. We especially recommend separating the EUSF from the coverage of large-scale public health emergencies and the emergencies covered by the EAR. Instead, we suggest establishing a new flexibility instrument that covers emergencies such as public health related ones as well as the ones within the EAR. The analysis gives some important insights, scientific as well as policy wise, about advantages as well as limitations of financial instruments that simultaneously should tackle different types of hazards and risks.ISSN:1381-2386ISSN:1573-159

    Remote sensing data for managing climate risks: Index-based insurance and growth related applications for smallhold-farmers in Ethiopia

    Get PDF
    The aim of most index-based insurance programs is to act as a social security mechanism and to provide defense against social and financial exclusion for people whose existing coping strategies are failing. For such schemes, insurance payouts do not depend on the individual losses but on an index which serves as a proxy for the losses. As proposed in this paper, also remote sensing data can be used for index-based insurance which gives additional advantages in comparison to traditional on-ground based indexed instruments. Furthermore, distinguishing between a promotion as well as protection level within such schemes is beneficial from a supply as well as demand side perspective and we suggest an approach how both can be simultaneously introduced within a remote sensing index based insurance framework. The applicability and usefulness of the approach is tested for smallhold farmers in North Shewa, Ethiopia. It is found that the use of remote sensing data is indeed a possible alternative to traditional weather based micro-insurance schemes which offers new ways to tackle current problems of such schemes from a supply side as well as demand side perspective

    Economic implications of autonomous adaptation of firms and households in a resource-rich coastal city

    Get PDF
    Abstract Climate change intensifies the likelihood of extreme flood events worldwide, amplifying the potential for compound flooding. This evolving scenario represents an escalating risk, emphasizing the urgent need for comprehensive climate change adaptation strategies across society. Vital to effective response are models that evaluate damages, costs, and benefits of adaptation strategies, encompassing non-linearities and feedback between anthropogenic and natural systems. While flood risk modeling has progressed, limitations endure, including inadequate stakeholder representation and indirect risks such as business interruption and diminished tax revenues. To address these gaps, we propose an innovative version of the Climate-economy Regional Agent-Based model that integrates a dynamic, rapidly expanding agglomeration economy populated by interacting households and firms with extreme flood events. Through this approach, feedback loops and cascading effects generated by flood shocks are delineated within a socio-economic system of boundedly-rational agents. By leveraging extensive behavioral data, our model incorporates a risk layering strategy encompassing bottom-up and top-down adaptation, spanning individual risk reduction to insurance. Calibrated to resemble a research-rich coastal megacity in China, our model demonstrates how synergistic adaptation actions at all levels effectively combat the mounting climate threat. Crucially, the integration of localized risk management with top-down approaches offers explicit avenues to address both direct and indirect risks, providing significant insights for constructing climate-resilient societies
    corecore