155 research outputs found

    Scale dependence of galaxy biasing investigated by weak gravitational lensing: An assessment using semi-analytic galaxies and simulated lensing data

    Full text link
    Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as function of physical scale kk with weak gravitational lensing. This method enables us to reconstruct the galaxy bias factor b(k)b(k) as well as the galaxy-matter correlation r(k)r(k) on spatial scales between 0.01hMpc1k10hMpc10.01\,h\,{\rm Mpc^{-1}}\lesssim k\lesssim10\,h\,{\rm Mpc^{-1}} for redshift-binned lens galaxies below redshift z0.6z\lesssim0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructed r(k)r(k). For simulated data, the reconstructions achieve an accuracy of 37%3-7\% (68\% confidence level) over the above kk-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 1015%10-15\%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates for b(k)b(k) and r(k)r(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn-Deep Survey and give a physical interpretation of the lens population.Comment: 31 pages, 16 figures; corrected typos in Eqs. (31), (34), and (36

    Magnification bias in the shear-ratio test: a viable mitigation strategy

    Full text link
    Using the same lens galaxies, the ratios of tangential shears for different source galaxy redshifts is equal to the ratios of their corresponding angular-diameter distances. This is the so-called shear-ratio test (SRT) and it is valid when effects induced by the intervening large-scale structure (LSS) can be neglected. The dominant LSS effect is magnification bias which, on the one hand, induces an additional shear, and on the other hand, causes a magnification of the lens population. Our objective is to quantify the magnification bias for the SRT and show an easy-to-apply mitigation strategy that does not rely on additional observations. We use ray-tracing data through the Millennium simulation to measure the influence of magnification on the SRT and test our mitigation strategy. Using the SRT as a null-test we find deviations from zero up to 10%10 \% for a flux-limited sample of lens galaxies, which is a strong function of lens redshift and the lens-source line-of-sight separation. Using our mitigation strategy we can improve the null-test by a factor of  ⁣100\sim \!100.Comment: 9 pages, 7 figure

    Thermodynamic laws in isolated systems

    Get PDF
    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here, we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focussing specifically on whether they satisfy or violate the zeroth, first and second law of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.Comment: footnotes 19, 26 and outlook section adde

    Bayesian weak lensing tomography: Reconstructing the 3D large-scale distribution of matter with a lognormal prior

    Full text link
    We present a Bayesian reconstruction algorithm that infers the three-dimensional large-scale matter distribution from the weak gravitational lensing effects measured in the image shapes of galaxies. The algorithm is designed to also work with non-Gaussian posterior distributions which arise, for example, from a non-Gaussian prior distribution. In this work, we use a lognormal prior and compare the reconstruction results to a Gaussian prior in a suite of increasingly realistic tests on mock data. We find that in cases of high noise levels (i.e. for low source galaxy densities and/or high shape measurement uncertainties), both normal and lognormal priors lead to reconstructions of comparable quality, but with the lognormal reconstruction being prone to mass-sheet degeneracy. In the low-noise regime and on small scales, the lognormal model produces better reconstructions than the normal model: The lognormal model 1) enforces non-negative densities, while negative densities are present when a normal prior is employed, 2) better traces the extremal values and the skewness of the true underlying distribution, and 3) yields a higher pixel-wise correlation between the reconstruction and the true density.Comment: 23 pages, 12 figures; updated to match version accepted for publication in PR

    Noiseless Gravitational Lensing Simulations

    Full text link
    The microphysical properties of the DM particle can, in principle, be constrained by the properties and abundance of substructures in DM halos, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of substructures, mainly because of the discreteness noise inherent to N-body simulations. Here we present Recursive-TCM, a method that is able to provide lensing predictions with an arbitrarily low discreteness noise, without any free parameters or smoothing scale. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages of this method over the widely used cloud-in-cells and adaptive-kernel smoothing density estimators. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in the convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.Comment: 13 pages, 13 figures. Updated fig 12, references adde

    The cosmological information of shear peaks: beyond the abundance

    Full text link
    We study the cosmological information of weak lensing (WL) peaks, focusing on two other statistics besides their abundance: the stacked tangential-shear profiles and the peak-peak correlation function. We use a large ensemble of simulated WL maps with survey specifications relevant to future missions like Euclid and LSST, to explore the three peak probes. We find that the correlation function of peaks with high signal-to-noise (S/N) measured from fields of size 144 sq. deg. has a maximum of ~0.3 at an angular scale ~10 arcmin. For peaks with smaller S/N, the amplitude of the correlation function decreases, and its maximum occurs on smaller angular scales. We compare the peak observables measured with and without shape noise and find that for S/N~3 only ~5% of the peaks are due to large-scale structures, the rest being generated by shape noise. The covariance matrix of the probes is examined: the correlation function is only weakly covariant on scales < 30 arcmin, and slightly more on larger scales; the shear profiles are very correlated for theta > 2 arcmin, with a correlation coefficient as high as 0.7. Using the Fisher-matrix formalism, we compute the cosmological constraints for {Om_m, sig_8, w, n_s} considering each probe separately, as well as in combination. We find that the correlation function of peaks and shear profiles yield marginalized errors which are larger by a factor of 2-4 for {Om_m, sig_8} than the errors yielded by the peak abundance alone, while the errors for {w, n_s} are similar. By combining the three probes, the marginalized constraints are tightened by a factor of ~2 compared to the peak abundance alone, the least contributor to the error reduction being the correlation function. This work therefore recommends that future WL surveys use shear peaks beyond their abundance in order to constrain the cosmological model.Comment: 15 pages, 10 figures, submitted to MNRA

    Magneto-elastic coupling within the Stoner model

    Get PDF
    Based on the Stoner Model for a single band in the mean field approximation (MFA), aspects of the interaction between lattice deformation and magnetisation of itinerant electron systems are studied. The derivation of the Hartree–Fock–Stoner (HFS) Hamiltonian is reviewed for a single band starting from a general Hamiltonian describing band electrons. The finite-temperature properties of the model, including the various magnetic states and the ferromagnetic-to-paramagnetic phase transition, are briefly discussed within MFA. The HFS Hamiltonian is applied to a single band with a rectangular density of states (DOS). The finite temperature magnetic properties of the system are studied using MFA. The model is extended to incorporate the interaction of lattice and magnetic degrees of freedom by introducing a dependence of the bandwidth on the lattice parameter. The effects of local variations of the lattice parameter are studied by introducing a local bandwidth and treating the variations as fluctuations. The results are compared to experimental magnetisation measurements of Invar alloys. Furthermore, magnetostriction and magnetic contributions to the thermal expansion are discussed within the model. Finally, effects of particle exchanges are considered within the model
    corecore