137 research outputs found

    Distinct immune evasion in APOBEC‐enriched, HPV‐negative HNSCC

    Get PDF
    Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative subgroup was identified, that showed higher T-cell inflammation and immune checkpoint expression, as well as expression of APOBEC3 genes. Mutations in immune-evasion pathways were also enriched in these tumors. Analysis of single-cell sequencing data identified expression of APOBEC3B and 3C genes in malignant cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with a distinct immunogenic phenotype, potentially mediating response to immunotherapy

    EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers

    Get PDF
    While genetic alterations in Epidermal growth factor receptor (EGFR) and PI3K are common in head and neck squamous cell carcinomas (HNSCC), their impact on oncogenic signaling and cancer drug sensitivities remains elusive. To determine their consequences on the transcriptional network, pathway activities of EGFR, PI3K, and 12 additional oncogenic pathways were inferred in 498 HNSCC samples of The Cancer Genome Atlas using PROGENy. More than half of HPV-negative HNSCC showed a pathway activation in EGFR or PI3K. An amplification in EGFR and a mutation in PI3KCA resulted in a significantly higher activity of the respective pathway (p = 0.017 and p = 0.007). Interestingly, both pathway activations could only be explained by genetic alterations in less than 25% of cases indicating additional molecular events involved in the downstream signaling. Suitable in vitro pathway models could be identified in a published drug screen of 45 HPV-negative HNSCC cell lines. An active EGFR pathway was predictive for the response to the PI3K inhibitor buparlisib (p = 6.36E-03) and an inactive EGFR and PI3K pathway was associated with efficacy of the B-cell lymphoma (BCL) inhibitor navitoclax (p = 9.26E-03). In addition, an inactive PI3K pathway correlated with a response to multiple Histone deacetylase inhibitor (HDAC) inhibitors. These findings require validation in preclinical models and clinical studies

    Molecular matched targeted therapies for primary brain tumors—a single center retrospective analysis

    Get PDF
    PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-04049-w

    Identification of Driver and Passenger Mutations of FLT3 by High-Throughput DNA Sequence Analysis and Functional Assessment of Candidate Alleles

    Get PDF
    SummaryMutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 mutations and experimentally tested the consequences of each candidate leukemogenic allele. This approach identified gain-of-function mutations that activated downstream signaling and conferred sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including mutations in the catalytic domain. These findings support the concept that acquired mutations in cancer may not contribute to malignant transformation and underscore the importance of functional studies to distinguish “driver” mutations underlying tumorigenesis from biologically neutral “passenger” alterations

    TelomereHunter – in silico estimation of telomere content and composition from cancer genomes

    Get PDF
    Background: Establishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets. Results: We here present TelomereHunter, a software for the detailed characterization of telomere maintenance mechanism footprints in the genome. The tool is implemented for the analysis of large cancer genome cohorts and provides a variety of diagnostic diagrams as well as machine-readable output for subsequent analysis. A novel key feature is the extraction of singleton telomere variant repeats, which improves the identification and subclassification of the alternative lengthening of telomeres phenotype. We find that whole genome sequencing-derived telomere content estimates strongly correlate with telomere qPCR measurements (r = 0.94). For the first time, we determine the correlation of in silico telomere content quantification from whole genome sequencing and whole genome bisulfite sequencing data derived from the same tumor sample (r = 0.78). An analogous comparison of whole exome sequencing data and whole genome sequencing data measured slightly lower correlation (r = 0.79). However, this is considerably improved by normalization with matched controls (r = 0.91). Conclusions: TelomereHunter provides new functionality for the analysis of the footprints of telomere maintenance mechanisms in cancer genomes. Besides whole genome sequencing, whole exome sequencing and whole genome bisulfite sequencing are suited for in silico telomere content quantification, especially if matched control samples are available. The software runs under a GPL license and is available at https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html

    Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis

    Get PDF
    SummaryPolycythemia vera (PV), essential thrombocythemia (ET), and myeloid metaplasia with myelofibrosis (MMM) are clonal disorders arising from hematopoietic progenitors. An internet-based protocol was used to collect clinical information and biological specimens from patients with these diseases. High-throughput DNA resequencing identified a recurrent somatic missense mutation JAK2V617F in granulocyte DNA samples of 121 of 164 PV patients, of which 41 had homozygous and 80 had heterozygous mutations. Molecular and cytogenetic analyses demonstrated that homozygous mutations were due to duplication of the mutant allele. JAK2V617F was also identified in granulocyte DNA samples from 37 of 115 ET and 16 of 46 MMM patients, but was not observed in 269 normal individuals. In vitro analysis demonstrated that JAK2V617F is a constitutively active tyrosine kinase
    corecore