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SUMMARY

Mutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known
whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput
platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 muta-
tions and experimentally tested the consequences of each candidate leukemogenic allele. This
approach identified gain-of-function mutations that activated downstream signaling and conferred
sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including
mutations in the catalytic domain. These findings support the concept that acquired mutations in
cancer may not contribute to malignant transformation and underscore the importance of functional
studies to distinguish ‘‘driver’’ mutations underlying tumorigenesis from biologically neutral ‘‘passen-
ger’’ alterations.
INTRODUCTION

The receptor tyrosine kinase (TK) FLT3 and its cognate

ligand are important for the expansion of early hematopoi-
Ca
etic progenitor cells and for the generation of mature nat-

ural killer cells and dendritic cells. Binding of FLT3 ligand

to the extracellular (EC) domain of FLT3 induces recep-

tor dimerization, which promotes phosphorylation of the
SIGNIFICANCE

High-throughput DNA sequencing has provided insights into the mutational profiles of human cancers and repre-
sents a promising strategy for the identification of therapeutic targets. However, recognizing the subset of func-
tionally relevant mutations has proven difficult. We used a combined genetic and functional approach to evaluate
a series of candidate mutations in the receptor tyrosine kinase FLT3 that were identified in patients with AML. This
strategy enabled distinction between activating alleles that conferred sensitivity to a small-molecule inhibitor and
bystander mutations that did not result in kinase activation. Remarkably, these latter alterations included muta-
tions in key functional domains of FLT3. These results emphasize that complementary functional studies are crit-
ical for validation of suspected oncogenic alleles from large-scale genomic screens.
ncer Cell 12, 501–513, December 2007 ª2007 Elsevier Inc. 501

https://core.ac.uk/display/82044503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ggilliland@rics.bwh.harvard.edu


Cancer Cell

Driver and Passenger Mutations of FLT3 in AML
FLT3 kinase domain, thereby activating the receptor and

several downstream signaling pathways, primarily the

PI3K/AKT pathway and the RAS/RAF/MEK/ERK cascade

(Parcells et al., 2006).

In patients with acute myeloid leukemia (AML), somatic

mutations that result in constitutive activation of FLT3

have been identified in two functional domains of the

receptor, the juxtamembrane (JM) domain and the kinase

domain. The JM domain, which has been shown to be crit-

ical for kinase autoinhibition (Griffith et al., 2004), is disrup-

ted by internal tandem duplications (ITDs) in 25%–30% of

adult AML patients (Stirewalt and Radich, 2003), whereas

JM domain point mutations have been described in

approximately 1% of cases (Reindl et al., 2006; Stirewalt

et al., 2004). FLT3 ITDs induce constitutive phosphoryla-

tion of several signal transduction intermediates, including

STAT5, AKT, and ERK1/2 (Parcells et al., 2006) and cause

myeloproliferative disease in various murine models (Kelly

et al., 2002; Lee et al., 2005). JM domain point mutations

also result in constitutive activation of STAT5 and AKT

(Reindl et al., 2006), but their in vivo transforming potential

has not been studied.

The activation loop (AL) in the carboxy-terminal lobe of

the kinase domain is affected by point mutations, inser-

tions, or deletions in approximately 7% of AML cases

(Frohling et al., 2005). AL mutations share several signal

transduction properties with FLT3 ITDs, for example, con-

stitutive phosphorylation of AKT and ERK1/2 (Choudhary

et al., 2005; Spiekermann et al., 2003). However, substantial

differences between the two mutation types in the activation

of STAT5 have been observed in some studies (Choudhary

et al., 2005; Grundler et al., 2005; Rocnik et al., 2006), but

not in others (Bagrintseva et al., 2004; Grundler et al.,

2003; Spiekermann et al., 2003), and mice transplanted

with BM expressing FLT3 AL mutations do not develop

myeloid disease but rather, a T cell lymphoproliferative

disorder with longer latency (Grundler et al., 2005). A mu-

tation in the amino-terminal lobe of the kinase domain was

found to induce constitutive activation of AKT, ERK1/2,

and STAT5 (Schittenhelm et al., 2006).

From a clinical perspective, FLT3 mutations are impor-

tant as a result of their prognostic relevance and because

constitutively activated FLT3 is an attractive therapeutic

target. FLT3 ITDs are associated with an increased risk

of relapse and short survival (Yanada et al., 2005), and

patients with low or absent levels of wild-type (WT) FLT3

appear to have a particularly dismal outcome (Thiede

et al., 2002; Whitman et al., 2001). In contrast, the prog-

nostic relevance of FLT3 AL mutations remains controver-

sial despite several studies on large patient series (Yanada

et al., 2005). Currently, there are four selective FLT3 inhib-

itors at various stages of clinical development, including

PKC412 (midostaurin), CEP-701 (lestaurtinib), MLN518

(tandutinib), and SU11248 (sunitinib) (Knapper, 2007).

These compounds are well tolerated at doses that achieve

inhibition of FLT3 and have shown moderate activity in

relapsed or refractory AML patients with activating FLT3

mutations. In addition, some patients without FLT3 ITDs

or known AL mutations have responded to FLT3 inhibitors,
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suggesting the possibility of other mutations that result in

constitutive activation of FLT3. Ongoing clinical trials are

evaluating the use of FLT3 inhibitors in combination with

chemotherapy.

Previous studies have focused on the detection of mu-

tations in the JM and kinase domains of FLT3, whereas the

frequency and spectrum of sequence alterations outside

these regions have not been systematically studied. We

therefore performed high-throughput DNA sequencing of

all coding exons of FLT3 in AML patients without FLT3

ITDs or known AL mutations. The primary aim of such a ge-

nomic screen is to identify ‘‘driver’’ mutations that are

causally implicated in cancer development. However, re-

cent large-scale sequencing studies in solid tumors that

used statistical approaches to evaluate the impact of

DNA sequence variants have demonstrated the difficulties

in distinguishing driver mutations from ‘‘passenger’’ alter-

ations that confer no clonal growth advantage (Forrest and

Cavet, 2007; Getz et al., 2007; Greenman et al., 2007; Ru-

bin and Green, 2007; Sjoblom et al., 2006; Wood et al.,

2007). To address this problem, we experimentally tested

the consequences of each candidate oncogenic allele

identified in our mutation screen. This combined genetic

and functional approach successfully identified gain-of-

function mutations in the EC domain, the JM domain,

and the AL of FLT3 and several passenger alterations

that did not result in constitutive kinase activity. Further-

more, we investigated the structural implications, signal

transduction properties, and sensitivity to FLT3 inhibition

of the activating alleles.

RESULTS

High-Throughput DNA Sequence Analysis of FLT3

We performed bidirectional sequencing of all FLT3 coding

exons in pretreatment samples from 222 adult AML pa-

tients without known activating mutations of FLT3, KIT,

and NRAS. Sequence data were evaluated for quality

and coverage within the region of interest of each exon

that included all coding bases and the five flanking intronic

bases at the 50 and 30 ends. High-quality, bidirectional

sequence reads were obtained for more than 90% of all

samples analyzed (see Table S1 in the Supplemental

Data available with this article online).

FLT3 Sequence Variants in Patients with AML
We identified a total of 17 heterozygous nucleotide

changes. Five of these changes corresponded to germline

variants listed in single-nucleotide polymorphism (SNP)

databases. Of the remaining 12 sequence alterations, 9

were predicted to change the amino acid sequence

of FLT3 (nonsynonymous substitutions; Table 1 and

Figure S1), whereas 3 were annotated as synonymous

substitutions, resulting in a ratio of nonsynonymous to

synonymous mutations of 3.

The nine nonsynonymous sequence variants that were

not known SNPs have not been observed in 48 normal

control samples in which the entire coding region of

FLT3 had previously been sequenced (Ley et al., 2003)
nc.
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and were not among the germline variants identified in

a mutation screen of all protein kinase genes in 210 human

cancers (Greenman et al., 2007). These alterations were,

Table 1. Nonsynonymous Sequence Variants Identified
by High-Throughput Sequencing of FLT3 in 222 AML
Patients

DNA Exon Protein Domain

581A > G 5 T167A extracellular

662G > A 5 V194M extracellular

1052G > A 8 D324N extracellular

1172T > C 9 Y364H extracellular

1434C > T 11 S451F extracellular

1751G > A 13 V557I transmembrane

1797A > G 14 Y572C juxtamembrane

1857T > G 14 V592G juxtamembrane

2293G > C 18 M737I kinase

2574G > A 20 G831E activation loop

2583G > A 20 R834Q activation loop

Sequence numbering is according to Ensembl Transcript/
Peptide ID ENST00000241453. D324N (refSNP ID

rs35602083) and V557I (refSNP ID rs35958982) are known

germline polymorphisms. Different mutations involving amino

acids V592 and R834 (V592A, R834_D835 del, R834_D835in-
sALG) are reported in the COSMIC database (version 30;

http://www.sanger.ac.uk/genetics/CGP/cosmic/).
Canc
therefore, considered to be candidate leukemogenic mu-

tations that warrant experimental validation. Paired diag-

nostic and remission material was available from a patient

with an M737I substitution in the FLT3 kinase domain. This

variant was present at diagnosis but not in the remission

sample, demonstrating that it was somatically acquired

(Figure S1). The three synonymous sequence variants

that were not known SNPs were considered to be non-

functional and were, therefore, not further investigated.

FLT3 S451F, Y572C, V592G, and R834Q Are
Gain-of-Function Mutations that Induce
Constitutive Kinase Activation
To determine the functional consequences of all nine

candidate mutations, we tested their ability to transform

murine hematopoietic BaF3 cells to cytokine-independent

growth, a property conferred by a broad spectrum of on-

cogenic TK alleles. Cells expressing S451F in the EC do-

main, Y572C or V592G in the JM domain, and R834Q in

the AL were able to grow in the absence of interleukin-3

(IL-3; Figure 1A). Immunoprecipitation of FLT3 followed

by western blotting with a phosphotyrosine-specific anti-

body demonstrated that these mutant kinases induced

constitutive phosphorylation of FLT3 (Figure 1B). These

results indicate that the S451F, Y572C, V592G, and

R834Q alleles are gain-of-function mutations that result

in constitutive kinase activation. To perform a rapid and

inexpensive secondary screen for these mutations, we

designed allele-specific primer extension assays and per-

formed genotype determination in an independent cohort
Figure 1. Constitutive Kinase Activation by FLT3 S451F, Y572C, V592G, and R834Q

(A) Expression of FLT3 S451F, Y572C, V592G, and R834Q resulted in IL-3-independent growth of BaF3 cells. Cells expressing the known AL mutation

D835Y were used as positive control. Cells expressing WT FLT3 were used as negative control. Experiments were performed in triplicate. Values are

represented as mean ± SEM.

(B) Expression of FLT3 S451F, Y572C, V592G, and R834Q in BaF3 cells resulted in constitutive FLT3 autophosphorylation. Cells were maintained in

IL-3-free medium for 6 hr, FLT3 was immunoprecipitated from whole-cell lysates, and immunoprecipitates were analyzed by western blotting with an

anti-phosphotyrosine antibody. Cells expressing a FLT3 ITD mutation (W51) or FLT3 D835Y were used as positive controls. Cells expressing WT FLT3

or the nontransforming G831E allele were used as negative controls.

(C) Expression of FLT3 T167A, V194M, Y364H, M737I, and G831E did not result in IL-3-independent growth of BaF3 cells. Experiments were per-

formed in triplicate. Values are represented as mean ± SEM.
er Cell 12, 501–513, December 2007 ª2007 Elsevier Inc. 503
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of 127 adult AML cases. This analysis identified one addi-

tional case positive for the S451F substitution and one

additional case with the R834Q allele. Thus, the overall

prevalence of activating FLT3 mutations in this study

was 1.7% (6 of 349 cases).

Cells expressing any of the remaining five nonsynony-

mous sequence variants in the EC domain, the kinase

domain, and the AL underwent apoptosis when cultured

in the absence of exogenous cytokines, and constitutive

phosphorylation of FLT3 was not observed (Figures 1B

and 1C). These results indicate that a substantial propor-

tion of the nonsynonymous sequence variants detected in

FLT3 are likely to be passenger mutations. To increase

confidence that the four presumed passenger mutations

for which no matched normal DNA sample was available

(T167A, V194M, Y364H, and G831E) did not represent

germline polymorphisms or sequence artifacts, the follow-

ing steps were taken. First, we sequenced the corre-

sponding exons of FLT3 in 102 normal DNA samples

and detected no abnormalities. Second, we determined

by mass spectrometry genotyping that the G831E allele

in the FLT3 AL was not present in the panel of 270 normal

individuals collected by the International HapMap Consor-

tium (2003). Third, we introduced PCR-amplified genomic

DNA from each case into a cloning vector and sequenced

between 50 and 55 individual transformants. In two cases

(T167A and G831E), the observed mutant-to-wild-type

allelic ratio was substantially different from 1 (0.19 and

3.2, respectively), suggesting that these alleles did not

represent heterozygous SNPs. In the remaining two cases

(V194M and Y364H), the number of recombinant clones

carrying the mutant allele was similar to that of clones har-

boring the WT sequence (24 versus 27 and 31 versus 21,

respectively), a finding compatible with either a somatic

mutation that was present in most of the cells from which

the original DNA sample was derived or with a heterozy-

gous germline variant.

For comparison with our functional analyses, we also

predicted the effects of all nine candidate mutations in sil-

ico using the SIFT (http://blocks.fhcrc.org/sift/SIFT.html)

and PMut (http://mmb2.pcb.ub.es:8080/PMut) software

programs (Table S2). Three sequence variants (S451F,

G831E, and R834Q) were predicted to affect the function

of FLT3, whereas four changes (T167A, V194M, Y364H,

and M737I) were predicted to be tolerated. The remaining

two mutations (Y572C and V592G) had conflicting results

between the SIFT and PMut algorithms. These findings

illustrate that bioinformatics approaches and functional

assays provide complementary information as to the

potential impact of mutations identified in large-scale

genomic screens.

Ortholog alignments for all nonsynonymous sequence

variants identified in this study, as well as relevant

sequence alignments of all five class III receptor TKs

(PDGFRA, PDGFRB, KIT, CSF1R, and FLT3) and other

TKs with a known role in cancer (EGFR, ERBB2, RET,

MET, and ABL1), are shown in Figure S2. Clinical charac-

teristics of the patients with activating FLT3 mutations are

given in Tables S3 and S4.
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FLT3 S451F, Y572C, V592G, and R834Q
Differentially Activate Downstream
Signaling Pathways
To examine the signal transduction properties of the four

activating mutations, BaF3 cells expressing FLT3 S451F,

Y572C, V592G, or R834Q were deprived of IL-3 and

then analyzed by western blotting for phosphorylation of

signaling proteins (Figure 2 and Table 2).

Expression of the JM domain mutations Y572C and

V592G resulted in constitutive phosphorylation of ERK1/2,

AKT, STAT3, and STAT5. We recently identified Y589 and

Y591 as sites in the JM domain that are necessary for ab-

errant activation of STAT5 in cells expressing a FLT3 ITD

mutation (Rocnik et al., 2006). To investigate whether

these residues are also required for signal transduction

mediated by JM domain point mutations, we generated

Y589/591F double substitutions in the cDNAs encoding

FLT3 Y572C and V592G. Coexpression of Y589/591F de-

layed the induction of IL-3-independent growth in BaF3

cells (Figure S3A), decreased the proliferation rate of

BaF3 cells in the absence of IL-3 (Figure S3B), and altered

the signaling properties of the two alleles (Figure S3C). The

Figure 2. Differential Activation of Signal Transduction Path-

ways by FLT3 S451F, Y572C, V592G, and R834Q

Expression of FLT3 S451F, Y572C, V592G, and R834Q in BaF3 cells

resulted in constitutive phosphorylation of varying signaling proteins.

Cells were maintained in IL-3-free medium for 6 hr, and whole-cell ly-

sates or immunoprecipitates from whole-cell lysates were analyzed by

western blotting as indicated. The signaling characteristics of the four

mutations were compared with those of FLT3 D835Y and the FLT3 ITD

mutation W51. Cells expressing WT FLT3 or the nontransforming

G831E allele were used as negative controls. Expression of FLT3 in

the different stable cell lines was confirmed by reprobing the blot dem-

onstrating constitutive phosphorylation of AKT with an anti-FLT3 anti-

body.
nc.
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Y589/591F mutations strongly reduced constitutive phos-

phorylation of ERK1/2, STAT3, and STAT5 and attenuated

aberrant activation of AKT. These results, along with our

analysis of the FLT3 structure (see below), support the hy-

pothesis that point mutations in the JM domain, like FLT3

ITD mutations, can alter the conformation of the JM do-

main, potentially resulting in exposure of occult docking

sites such as Y589 and Y591, in turn enabling recruitment

and activation of specific downstream signaling proteins.

The signaling properties of the R834Q substitution were

compared to those of the most frequent AL mutation,

D835Y. Consistent with previous reports (Choudhary

et al., 2005; Grundler et al., 2005; Rocnik et al., 2006),

BaF3 cells expressing D835Y showed constitutive activa-

tion of ERK1/2 and AKT, but not STAT5. Furthermore, we

found that expression of D835Y was associated with con-

stitutive phosphorylation of STAT3. The R834Q mutation,

on the other hand, resulted in phosphorylation of ERK1/2

but not AKT, STAT3, or STAT5. This signaling pattern was

associated with increased sensitivity to growth inhibition

Table 2. Constitutive Phosphorylation of Signaling
Molecules in BaF3 Cells Expressing Activating FLT3
Mutations

FLT3 Mutation

Signaling

molecule

S451F Y572C V592G R834Q D835Y W51

FLT3 + + + + + +

STAT5 � + + � � +

ERK1/2 + + + + + +

AKT � + + � + �

STAT3 � + + � + �

S451F, Y572C, V592G, and R834Q were identified in this

study; D835Y and W51 are known activating FLT3 mutations

that have been described previously. +, constitutive phos-
phorylation; �, no constitutive phosphorylation.
Can
by the MEK inhibitor PD98059 as compared to cells har-

boring the D835Y mutation (Figures 3A and 3B), indicating

a higher relative contribution of ERK signaling to the trans-

forming activity of the R834Q allele. Similar to R834Q-

positive cells, cells expressing the S451F mutation also

showed constitutive phosphorylation of ERK1/2, but no

induction of AKT, STAT3, or STAT5. These results suggest

that activation of the MAPK pathway in the absence of

PI3K/AKT, STAT3, or STAT5 signaling is sufficient for

transformation of hematopoietic cells by specific FLT3 al-

leles and that cells carrying different FLT3 mutations are

differentially dependent on signaling mechanisms that

involve the MEK/ERK cascade.

FLT3 S451F, Y572C, V592G, and R834Q Confer
Varying Sensitivity to the TK Inhibitor PKC412
To determine the sensitivity of the four activating muta-

tions to FLT3 inhibition, BaF3 cells expressing FLT3

S451F, Y572C, V592G, or R834Q were treated with in-

creasing concentrations of the small-molecule TK inhibitor

PKC412. FLT3 Y572C, V592G, and R834Q conferred high

sensitivity to PKC412 (inhibitory concentration of 50%

[IC50], 2.5 nM, 5 nM, and 2.3 nM, respectively), whereas

a considerably higher IC50 (48 nM) was observed for

FLT3 S451F (Figure 4A). Western blot analysis showed

that treatment with PKC412 led to dose-dependent

decreases in FLT3 autophosphorylation and in phosphor-

ylation of ERK1/2 that correlated with inhibition of cell

growth (Figure 4B). WT FLT3-expressing BaF3 cells grown

in the presence of IL-3 were used as a control for toxicity

unrelated to FLT3 inhibition, and no antiproliferative effect

was observed for concentrations of PKC412 up to 50 nM

(Figure 4A). These data show that the four activating FLT3

mutations identified in our mutation screen can be

inhibited by PKC412 and that Y572C, V592G, and

R834Q are considerably more sensitive to this compound

than S451F.
Figure 3. Varying Sensitivity of Different

FLT3 AL Mutations to MEK Inhibition

(A) Expression of FLT3 R834Q was associated

with a higher sensitivity to MEK inhibition as

compared to FLT3 D835Y. BaF3 cells stably

expressing FLT3 R834Q or D835Y and growing

in the absence of IL-3 were treated with

PD98059 as indicated. Cell viability was mea-

sured after 48 hr, and the proportion of viable

cells relative to the control (no inhibitor) was

plotted. IC50 values are indicated. Experiments

were performed in triplicate. Values are repre-

sented as mean ± SEM.

(B) PD98059 treatment of BaF3 cells express-

ing FLT3 R834Q or D835Y resulted in dose-de-

pendent inhibition of ERK1/2 phosphorylation.

Cells were incubated with varying drug con-

centrations for 15 min, and whole-cell lysates

were analyzed by western blotting as indi-

cated.
cer Cell 12, 501–513, December 2007 ª2007 Elsevier Inc. 505
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Figure 4. Varying Sensitivity of FLT3 S451F, Y572C, V592G, and R834Q to Kinase Inhibition by PKC412

(A) Expression of FLT3 Y572C, V592G, or R834Q was associated with higher sensitivity to FLT3 inhibition as compared to FLT3 S451F. BaF3 cells

growing in the absence of IL-3 were treated with PKC412 as indicated. Cell viability was measured after 48 hr, and the proportion of viable cells relative

to the control (no inhibitor) was plotted. IC50 values are indicated. Experiments were performed in triplicate. Values are represented as mean ± SEM.

(B) PKC412 treatment of BaF3 cells expressing FLT3 S451F, Y572C, V592G, and R834Q resulted in dose-dependent decreases in FLT3 and ERK1/2

phosphorylation. Cells were incubated with varying drug concentrations for 2 hr, and whole-cell lysates were analyzed by western blotting as

indicated.
Mutation of FLT3 V592 Promotes Aberrant
Signal Transduction and Proliferation
of Human AML Cells
To investigate the role of mutant FLT3 in human AML cells,

we analyzed the MONO-MAC-6 cell line that has been

reported to contain a V592A substitution in the FLT3 JM

domain (Spiekermann et al., 2003). DNA sequence analy-

sis confirmed the presence of a homozygous V592A

mutation in this cell line (data not shown). Lentiviral trans-

duction of MONO-MAC-6 cells with two short hairpin RNA

(shRNA) constructs targeting different regions of the FLT3

transcript resulted in stable downregulation of FLT3

mRNA (Figure 5B) and reduced levels of FLT3 protein

(Figure 5C). Knockdown of FLT3 was associated with

a substantial reduction in cell viability as compared to cells

transduced with a nontargeting control shRNA (Figure 5A).

Western blot analysis showed that suppression of FLT3

resulted in loss of STAT5 phosphorylation (Figure 5C),

indicating that STAT5 is a downstream target of mutations

involving FLT3 V592, consistent with our signaling studies

in BaF3 cells. These results suggest that endogenous

point mutations of FLT3 V592 promote the growth and

survival of human AML cells and that this effect is medi-

ated through aberrant STAT5 activation.

Structural Analysis of FLT3 Mutations
Based on the crystal structure of the intracellular domains

of FLT3 (Protein Data Bank accession code 1RJB;

Figure 6A), we assessed the potential mechanism by which

point mutations in the JM domain and in the AL result in

constitutive FLT3 kinase activity. Residues Y572 and
506 Cancer Cell 12, 501–513, December 2007 ª2007 Elsevier I
R834 seem to be involved in maintaining the energetic

favorability of the autoinhibited conformation of FLT3.

Loss of the stabilizing effects of these residues should

favor the active conformation. Y572, which has thus far

not been found mutated in AML, is described as the first

amino-terminal residue visible in the electron density of

the crystal structure (Griffith et al., 2004). It is a key

‘‘hook’’ for the JM domain and is critical to maintain the

autoinhibited conformation of FLT3 (Figure 6B). The

Y572C substitution is expected to result in a substantial

loss of hydrogen bonding networks and extensive hydro-

phobic interactions, with a consequent reduction in the

energetic favorability of this conformation. Likewise, loss

of hydrogen bonding networks that would result from the

R834Q and D835Y mutations is expected to destabilize

the autoinhibited kinase conformation (Figures 6C and 6D).

Conversely, structural analysis suggests that the non-

transforming G831E substitution may not deleteriously

affect the stability of the autoinhibited conformation. The

molecular surface of autoinhibited FLT3 shows that there

is a cavity directly adjacent to G831. This cavity is filled

with water molecules and falls between the autoinhi-

bited-conformation AL and JM domain (Figure 6E). Even

though mutation of this glycine residue to glutamic acid

is a substantial change, the glutamic acid residue should

be able to be accommodated in the autoinhibited confor-

mation by displacement of a number of water molecules.

G831 lies within the invariant protein kinase DFG motif

required for correct Mg2+�ATP coordination (Karlsson

et al., 1993) and is important for conformational move-

ments of the DFG motif between active and inactive states
nc.
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Figure 5. Effects of FLT3 Knockdown in

Human AML Cells

(A) Downregulation of FLT3 using shRNA

constructs TRCN 772 and TRCN 773 inhibited

the growth of a human AML cell line, MONO-

MAC-6, that harbors a homozyogus V592A

mutation in the FLT3 JM domain. Experiments

were performed in triplicate. Values are repre-

sented as mean ± SEM.

(B) Transduction of MONO-MAC-6 cells with

shRNA constructs TRCN 772 and TRCN 773

resulted in decreased FLT3 mRNA levels as

compared to a nontargeting control construct.

Experiments were performed in duplicate.

Values are represented as mean ± SEM.

(C) Suppression of FLT3 mRNA was associ-

ated with a reduction in FLT3 protein (upper

panels) and with loss of STAT5 phosphoryla-

tion (lower panels).
(Levinson et al., 2006). Consequently, the G831E mutation

may stabilize FLT3 in the autoinhibited conformation and

result in reduced kinase activity, consistent with our data

showing a lack of FLT3 autophosphorylation in cells

expressing FLT3 G831E.

DISCUSSION

We have used high-throughput DNA sequence analysis to

determine the frequency and spectrum of mutations in the

FLT3 gene in adult AML patients without known FLT3 ITDs

or AL mutations. Sequencing of all FLT3 coding exons

identified nine candidate leukemogenic alleles in six exons

corresponding to different domains of the FLT3 receptor.

Large-scale mutational profiling studies in cancer typi-

cally result in extensive lists of validated nonsynonymous

sequence variants. A major challenge of these studies is to

distinguish driver mutations that are responsible for malig-

nant transformation from nonfunctional passenger alter-

ations that arise in the malignant clone by chance and
Can
accumulate during repeated rounds of cell division. To

identify genetic changes with a role in tumorigenesis, sta-

tistical models have been developed that incorporate

mutational frequency and distribution, and it has been

inferred from such approaches that nonsynonymous pas-

senger mutations are present at a higher frequency than

previously anticipated (Greenman et al., 2007; Sjoblom

et al., 2006; Wood et al., 2007). We provide functional doc-

umentation of this concept by using a different strategy

that combined both high-throughput DNA sequence anal-

ysis of FLT3 in primary AML samples with experimental

validation of all potential driver mutations identified. Cyto-

kine independence assays and biochemical analysis

revealed that of the 9 candidate leukemogenic alleles, 4

are gain-of-function mutations that result in constitutive

kinase activation and stimulation of downstream signaling

pathways, properties that are relevant to leukemogenesis

and can be exploited therapeutically, whereas the remain-

ing 5 alleles were not associated with increased kinase

activity and aberrant signal transduction.
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Figure 6. Structural Analysis of FLT3

Mutations

(A) Ribbon representation of the crystal struc-

ture of the FLT3 kinase domain (Protein Data

Bank, accession code 1RJB). The structure is

a typical kinase fold crystallized in the autoinhi-

bited conformation with the JM domain pack-

ing closely to the kinase domain and locking

the protein in this conformation.

(B) Hydrogen bonding network formed by FLT3

Y572. Y572 inserts into the catalytic cleft of

FLT3, where the phenolic hydroxyl oxygen

forms hydrogen bonds to the catalytic glutamic

acid, E661, and an ordered water molecule.

The aromatic ring also makes extensive hydro-

phobic contacts. The Y572C mutation will dis-

rupt this ‘‘hook’’ that locks the JM domain in

the autoinhibited conformation.

(C) Hydrogen bonding network formed by FLT3

R834. R834 is critical to the formation of a

hydrogen bonding network that incorporates

interactions with the side chains of residues

N816, R815, Y842, D811, the backbone car-

bonyl oxygen of R815, and two water mole-

cules. This network is directly adjacent to a

hydrogen bonding network in which N841

plays a critical role.

(D) Hydrogen bonding network formed by FLT3

D835. D835 is an integral part of a hydrogen

bonding network that seems to stabilize the AL backbone in the autoinhibited conformation. There is a hydrogen bond directly between the carboxyl

group and the backbone amide of residue S836. There is also an indirect hydrogen bond between the caryboxyl group and the backbone amide of

M837 mediated by a water molecule.

(E) Surface representation of the region proximal to G831. The molecular surface of FLT3 protein atoms is shown as a transparent gray surface. The

surface is colored green where it contacts G831, and water molecules are shown as red spheres. The G831E mutation may not disrupt this confor-

mation due to the proximity of a water-filled cavity adjacent to G831. In this figure, amino acid residues are shown in stick representation with nitrogen

atoms in blue, oxygen in red, and carbon atoms the same color as the corresponding domain. Water molecules are shown as red spheres and

hydrogen bonds as dashed red lines with their lengths labeled in Å. This figure was made using the program PyMOL (www.pymol.org).
These results also indicate that functional analyses can

provide information beyond that derived from statistical

methods for identifying driver mutations. First, we show

that rare sequence variants occurring at frequencies that

would not allow them to be distinguished from unselected

passenger changes can be drivers. Second, we report

that alleles in the kinase domain and in the AL—highly

conserved and functionally relevant domains that, based

on mathematical approaches, are likely to harbor driver

mutations—may not be associated with a detectable

gain of function. Third, statistical techniques result in iden-

tification of candidate cancer genes, but do not predict the

ability of individual alleles to contribute to transformation.

Our analysis of a series of nonsynonymous sequence var-

iants in FLT3, a validated cancer gene (Futreal et al., 2004),

indicates that functional studies are needed to comple-

ment the bioinformatic approaches that have been de-

scribed to date.

In addition to mutational frequency and distribution,

statistical methods for assessing the functional relevance

of DNA sequence variants in cancer rely on discerning ac-

quired mutations from inherited polymorphisms. While the

analysis of germline DNA is essential to assess the origin

of cancer-associated genomic alterations and to deter-

mine whether a mutation has been selected for during
508 Cancer Cell 12, 501–513, December 2007 ª2007 Elsevier I
tumorigenesis, previous findings in solid tumors indicate

that the presence of a kinase mutation in constitutional

DNA does not exclude the possibility that it has a potential

role in malignant transformation (Bell et al., 2005; Jeffers

et al., 1997; Mulloy et al., 2007; Plaza-Menacho et al.,

2006). These data further support the conclusion that

the interpretation of high-throughput sequencing studies

can be improved through functional assessment of candi-

date oncogenic alleles.

The four activating mutations that were identified in

our screen are located in the EC domain (S451F), the

JM domain (Y572C and V592G), and the AL (R834Q)

of FLT3. Sequence variants in the EC region (D324N

and N520Y) have been described previously in patients

with AML (Ley et al., 2003; Syampurnawati et al., 2007).

However, D324N is also present in normal individuals

and in nonhematopoietic tissues from AML patients

and does not confer cytokine-independent growth to

BaF3 cells (Schnittger et al., 2006), whereas the func-

tional consequences of N520Y have not been assessed.

Our results thus document that FLT3, like EGFR and

KIT (Gari et al., 1999; Lee et al., 2006), can be activated

by mutations in the EC domain. To determine the

mechanism by which the S451F mutation results in

constitutive FLT3 kinase activity, structural analysis of
nc.
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a larger FLT3 molecule that includes the EC domain will

be required.

Point mutations in the region between amino acids 579

and 594 in the FLT3 JM domain have been detected in

a small proportion of AML cases (Reindl et al., 2006; Stir-

ewalt et al., 2004). We have found a valine to glycine

substitution involving residue 592 and a mutation involving

Y572. Y572 is the first amino acid of the JM domain, and

analysis of the crystal structure of the FLT3 cytoplasmic

domain has suggested a key role for this residue in kinase

autoinhibition (Griffith et al., 2004). Our structural analysis

suggests that mutation of Y572 would result in disruption

of its extensive interactions with the surrounding FLT3

subdomains and consequent destabilization of the inac-

tive kinase conformation. In support of this hypothesis,

the Y572C substitution that was identified in our mutation

screen results in constitutive FLT3 kinase activity. These

data provide genetic evidence for the importance of

Y572 in maintaining the autoinhibited conformation of

FLT3 and suggest that any mutation that interferes with

the stability of the JM domain in this conformation is likely

to be transforming.

The signaling properties of the two JM domain point

mutations are similar to those of FLT3 ITDs (Parcells

et al., 2006). In particular, aberrant activation of STAT5

by JM domain point mutations appears to involve two tyro-

sine residues, Y589 and Y591, that are essential for FLT3

ITD-mediated induction of STAT5 and leukemic transfor-

mation in vivo (Rocnik et al., 2006). Analysis of the role of

Y589 and Y591 also provided insights into the deregulation

of other signaling pathways by mutant FLT3. For example,

the majority of primary AML samples are characterized by

activated MAPK and PI3K/AKT signaling; however, the

fact that dysregulation of various upstream effectors can

result in aberrant phosphorylation of ERK1/2 and AKT indi-

cates that the MAPK and PI3K/AKT cascades may be ac-

tivated through a variety of different mechanisms (Martelli

et al., 2006; Platanias, 2003). In support of the hypothesis

that mutant TKs activate downstream signaling pathways

by distinct mechanisms, phosphorylation of ERK1/2 and

AKT by FLT3 JM domain point mutations also requires

Y589 and Y591, and similar observations were made for

constitutive activation of STAT3. These results suggest

that the different types of JM domain mutations (ITDs

and point mutations) contribute in similar ways to myeloid

leukemogenesis and demonstrate that Y589 and Y591 are

critical for the induction of several signaling pathways that

are activated in leukemias with FLT3 JM domain muta-

tions. Furthermore, these findings illustrate the potential

of point mutations to alter the substrate specificity of

protein kinases. Whether FLT3 Y589/591-mediated signal

transduction in AML involves direct engagement of down-

stream effectors by these residues or requires additional

adaptor molecules is currently unknown.

Previously described mutations in the FLT3 AL include

substitutions, insertions, or deletions within a region be-

tween amino acids 834 and 842, with D835 being the

most commonly affected residue (Frohling et al., 2005).

We identified nonsynonymous substitutions at codons
Ca
831 and 834. Analysis of the crystal structure of the

FLT3 kinase domain suggests that mutation of residue

R834 would interfere with the stability of the autoinhibited

conformation, and in agreement with this hypothesis,

FLT3 R834Q has constitutive kinase activity and confers

IL-3-independent growth to BaF3 cells. In contrast, muta-

tion of the conserved DFG motif G831 to glutamic acid

may deleteriously affect the structural requirements for

enzymatic activity, is expected to be compatible with the

autoinhibited conformation, and does not result in trans-

formation of hematopoietic cells. These results illustrate

the value of structural analysis for understanding the

atomic-level mechanisms by which TK mutations associ-

ated with human leukemias function. In addition, these

data indicate that the autoinhibited conformation of FLT3

is critically dependent on the stabilizing contacts of a lim-

ited number of specific amino acids, whereas mutation of

other residues within the AL does not alter the structure

and function of the FLT3 kinase.

Analysis of the signaling properties of FLT3 R834Q

demonstrated that this mutation, unlike the more common

D835Y allele, results in activation of ERK1/2, but not AKT,

STAT3, or STAT5. Consistent with this observation, the

R834Q mutation is associated with enhanced sensitivity

to MEK inhibition, indicating that cells expressing R834Q

are more reliant on MAPK signaling than are D835Y-

expressing cells that constitutively phosphorylate multiple

signaling proteins. These results suggest that there are

not only differences in signal transduction between vari-

ous FLT3 mutation classes, for example, ITDs and AL

mutations (Choudhary et al., 2005; Grundler et al., 2005),

but also between distinct alleles within a given mutation

class and that cells carrying different FLT3 mutations are

differentially dependent on certain signaling pathways.

To determine the functional consequences of candidate

mutations, we used an in vitro assay that is based on

exogenous expression of mutated alleles in murine hema-

topoietic cells. This assay has proved to be of value for the

assessment of increased TK activity and perturbed signal

transduction and has been validated for numerous TK

alleles identified in human hematologic malignancies,

including FLT3 ITDs and AL mutations (Clark et al., 2004;

Weisberg et al., 2002), as well as for TK alleles associated

with solid tumors, such as mutations in the EGFR kinase

domain and the recently discovered EML4-ALK fusion in

patients with non-small-cell lung cancer (Jiang et al.,

2005; Soda et al., 2007). On the other hand, conversion

of BaF3 cells to cytokine independence may not faithfully

assess the functional implications of certain mutations,

either because they require expression of additional pro-

teins (Lu et al., 2005) or because cooperativity between

two or more mutations is required for signaling pathway

activation. Lastly, this assay may fail to detect a gain of

function conferred by kinase mutations that do not result

in increased enzymatic activity. For instance, Wan et al.

(2004) described three mutants of the serine-threonine

kinase BRAF with impaired catalytic activity that are

capable of stimulating downstream signaling through

transactivation of CRAF. Although we observed no
ncer Cell 12, 501–513, December 2007 ª2007 Elsevier Inc. 509
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activation of ERK1/2, AKT, STAT3, or STAT5 in cells ex-

pressing FLT3 mutations that read out as nonfunctional

in the BaF3 assay, it is possible that some of these alleles

stimulate other effector molecules that were not analyzed

in our study. We recognize that it is impossible to defini-

tively exclude any conceivable function of a given muta-

tion. Nonetheless, the nontransforming mutations identi-

fied in our screen do not meet conventional criteria for

effects on kinase activation.

The activating mutations identified in our study con-

ferred varying degrees of sensitivity to the small-molecule

TK inhibitor PKC412. Cells expressing Y572C, V592G, or

R834Q were highly sensitive to this compound, as has

been reported for other JM domain (Reindl et al., 2006)

and AL mutations (Choudhary et al., 2005; Grundler

et al., 2003; Weisberg et al., 2002). In contrast, cytotoxic

responses in S451F-expressing cells required substan-

tially higher drug concentrations. The determinants of

response to pharmacologic inhibition of FLT3 are diverse

and remain only partly understood. In general, the pres-

ence of mutant FLT3 is associated with increased drug

sensitivity (DeAngelo et al., 2006; Fiedler et al., 2005),

yet there appears to be substantial variation among the

different mutation types (Choudhary et al., 2005; Grundler

et al., 2003; Weisberg et al., 2002) as well as between

individual alleles within the same mutation class (Clark

et al., 2004; Grundler et al., 2003). In addition, it has

been observed that patients without FLT3 ITDs or any of

the known AL mutations may also derive benefit from

FLT3 inhibitor therapy, which might be related to the pres-

ence of previously unrecognized mutations (Schittenhelm

et al., 2006), and in vitro studies in primary AML samples

have shown that there is substantial interpatient variation

in the degree of dependency on FLT3 signaling (Knapper

et al., 2006). Our findings further illustrate the complex

relationship between FLT3 mutation status and response

to pharmacologic FLT3 inhibition.

In summary, our results demonstrate that previously un-

recognized activating FLT3 mutations in the EC domain,

the JM domain, and the AL occur in patients with AML, al-

beit at a low frequency. Since mutations lying outside the

usually studied mutational hotspots may confer sensitivity

to small-molecule TK inhibitors, eligibility for clinical trials

of FLT3-targeted therapies should not be based on diag-

nostic screens that are limited to the detection of only

a fraction of the FLT3 mutations associated with AML.

The development of sensitive, allele-specific assays,

such as mass spectrometry-based genotyping (Thomas

et al., 2007), will allow all patients enrolled on trials of

FLT3 inhibitors to be genotyped for all known FLT3 alleles,

and it is hoped that similar strategies will be used in trials

of molecularly targeted therapies for patients with different

hematopoietic malignancies and solid tumors.

FLT3 is a highly annotated and well-studied cancer

gene known to play a key role in myeloid leukemogenesis.

The finding that only a fraction of the nonsynonymous

FLT3 mutations associated with AML result in constitutive

kinase activity illustrates the challenge in distinguishing

between sequence variants that contribute to malignant
510 Cancer Cell 12, 501–513, December 2007 ª2007 Elsevier
transformation and nonfunctional passenger mutations.

Given that the increasing throughput of DNA sequencing

technologies will allow improved characterization of

somatic cancer genomes, these data demonstrate that

a combination of genetic and functional approaches will

be crucial in order to identify the mutations that truly drive

the development of cancer and to validate the potential of

suspected oncogenic alleles as therapeutic targets.

EXPERIMENTAL PROCEDURES

Patient Samples

This study included 349 adult patients with AML, de novo or secondary

after treatment for a primary malignancy or following myelodysplasia,

as defined by French-American-British Cooperative Group criteria or

the World Health Organization classification (Bennett et al., 1985;

Harris et al., 1999). Diagnostic BM and peripheral blood samples

were collected after obtaining informed consent according to the Dec-

laration of Helsinki and with institutional review board approval of the

relevant institutions. All samples were enriched for mononuclear cells

by density centrifugation before banking. Only samples with more than

50% blasts were included for DNA sequence analysis, and more than

80% of the samples had at least 80% blasts. All specimens that were

analyzed by DNA sequencing were negative for FLT3 ITDs, as

assessed by PCR amplification of exons 14 and 15; for FLT3 AL muta-

tions involving codons 835 and 836, as assessed by PCR amplification

of exon 20 followed by EcoRV digestion; for activating KIT mutations,

as assessed by sequencing of exons 8 and 17; and for mutations

involving NRAS codons 12, 13, and 61, as assessed by sequencing

of exons 1 and 2.

FLT3 Mutational Analysis and Selection of Candidate

Mutations

Extraction of genomic DNA, amplification of FLT3 exons, bidirectional

sequencing, and sequence detection were performed using a high-

throughput resequencing approach as previously described (Levine

et al., 2005). External gene-specific primers and internal M13-

appended primers are listed in Table S5. Analysis of sequence traces

was performed using Mutation Surveyor version 2.28 (SoftGenetics,

State College, PA). Five steps were used to identify mutations of inter-

est. First, any synonymous substitutions were not analyzed further.

Second, known SNPs were excluded by comparison to the dbSNP

database (release 127; http://www.ncbi.nlm.nih.gov/projects/SNP).

Third, published data sets (Greenman et al., 2007; Ley et al., 2003)

were queried to exclude any nonsynonymous substitutions in the

FLT3 coding sequence that have been detected in DNA samples

derived from normal tissues. Fourth, sequence chromatograms were

visually inspected to remove false positive calls in the automated anal-

ysis. Fifth, candidate mutations were reamplified and sequenced from

the original DNA sample for independent verification. Leukemic cells at

diagnosis and a matched remission sample were analyzed in one case

with a presumptive leukemogenic mutation in the FLT3 kinase domain,

M737I.

Genotyping

Mass spectrometry genotyping was performed as previously

described (Levine et al., 2005). Primers and primer extension probes

for detection of the different FLT3 alleles are listed in Table S6.

DNA Constructs and Retrovirus Production

Sequence variants were introduced into the full-length FLT3 cDNA

using the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene,

La Jolla, CA). All mutations were confirmed by sequencing of the entire

FLT3 open reading frame. The mutant cDNAs were cloned into the

MSCV-PGK-neo retroviral vector, and full-length protein expression

was documented by western blotting. Generation of retroviral
Inc.
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supernatants and infection of BaF3 cells were performed as described

previously (Rocnik et al., 2006). BaF3 cells transduced with MSCV-

PGK-neo constructs were selected with G418 in the presence of IL-3

for 14 days.

Cell Culture

BaF3 cells were maintained in RPMI-1640 supplemented with 10% fe-

tal calf serum and 10% WEHI-conditioned medium as a source of IL-3.

For cytokine independence assays, cells transduced with each of the

MSCV-PGK-neo retroviral contructs were seeded at a density of

0.33 3 106/ml in IL-3-free medium, and the number of viable cells

was determined daily by trypan blue exclusion. For growth inhibition

assays, cells were seeded at a density of 1 3 105/ml in IL-3-free

medium with various concentrations of PKC412 (Novartis, Basel, Swit-

zerland) or PD98059 (Calbiochem, San Diego, CA), and the number of

viable cells was determined after 48 hr using the CellTiter 96AQueous

One Solution Proliferation Assay (Promega, Madison, WI).

Immunoprecipitation and Western Blotting

Immunoprecipitation and western blotting were performed as de-

scribed previously (Rocnik et al., 2006) using the following antibodies:

anti-FLT3, anti-STAT5, anti-phospho-ERK1/2 (T202/Y204) (Santa Cruz

Biotechnology, Santa Cruz, CA); anti-STAT3, anti-phospho-STAT3

(Y705), anti-phospho-STAT5 (Y694), anti-ERK1/2, anti-AKT, anti-

phospho-AKT (S473) (Cell Signaling Technology, Beverly, MA); and

anti-phosphotyrosine (4G10) (Upstate, Lake Placid, NY).

Knockdown of FLT3 Expression

Two pLKO.1-based lentiviral vectors encoding shRNAs targeted to the

30 untranslated region (TRCN 772) or the coding sequence (TRCN 773)

of the human FLT3 mRNA, and a pLKO.1 construct containing a non-

targeting shRNA sequence were obtained from the MISSION TRC-Hs

1.0 (Human) shRNA library (Root et al., 2006). The oligonucleotide

sequences of the shRNAs were as follows (21-nucleotide stem

sequences matching the target transcript underlined; noncomplemen-

tary 6-nucleotide loop sequences italicized): TRCN 772, 50-CCG GCG

TCT GCG TTT ACT CTT GTT TCT CGA GAA ACA AGA GTA AAC GCA

GAC GTT TTT-30; TRCN 773, 50-CCG GGC TAA CTT CTA CAA ACT

GAT TCT CGA GAA TCA GTT TGT AGA AGT TAG CTT TTT-30. Gener-

ation of lentiviral supernatants and infection of human AML cells were

performed as described previously (Scholl et al., 2007).

Analysis of the FLT3 Structure

The crystal structure of the kinase domain of FLT3 was downloaded

from the Protein Data Bank (http://www.pdb.org; accession code

1RJB) and analyzed in O (Jones et al., 1991).

Supplemental Data

The Supplemental Data include three supplemental figures and six

supplemental tables and can be found with this article online at

http://www.cancercell.org/cgi/content/full/12/6/501/DC1/.
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