57 research outputs found

    Review of photoacoustic flow imaging: its current state and its promises

    Get PDF
    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages

    Pulsed photoacoustic flow imaging with a handheld system

    Get PDF
    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging—ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole bloo

    Population-based 10-year cumulative revision risks after hip and knee arthroplasty for osteoarthritis to inform patients in clinical practice: a competing risk analysis from the Dutch Arthroplasty Register

    Get PDF
    Background and purpose - A lifetime perspective on revision risks is needed for optimal timing of arthroplasty in osteoarthritis (OA) patients, weighing the benefit of total hip arthroplasty/total knee arthroplasty (THA/TKA) against the risk of revision, after which outcomes are less favorable. Therefore, we provide population-based 10-year cumulative revision risks stratified by joint, sex, fixation type, and age.Patients and methods - Data from the Dutch Arthroplasty Register (LROI) was used. Primary THAs and TKAs for OA between 2007 and 2018 were included, except metal-on-metal prostheses or hybrid/reversed hybrid fixation. Revision surgery was defined as any change of 1 or more prosthesis components. The 10-year cumulative revision risks were calculated stratified by joint, age, sex, at primary arthroplasty, and fixation type (cemented/uncemented), taking into account mortality as a competing risk. We estimated the percentage of potentially avoidable revisions assuming all OA patients aged < 75 received primary THA/TKA 5 years later while keeping age-specific 10-year revision risks constant.Results - 214,638 primary THAs and 211,099 TKAs were included, of which 31% of THAs and 95% of TKAs were cemented. The 10-year cumulative revision risk varied between 1.6% and 13%, with higher risks in younger age categories. Delaying prosthesis placement by 5 years could potentially avoid 23 (3%) THA and 162 (17%) TKA revisions.Interpretation - Cumulative 10- year revision risk varied considerably by age in both fixation groups, which may be communicated to patients and used to guide timing of surgery.Clinical epidemiolog

    Long-lasting effects of dexamethasone on immune cells and wound healing in the zebrafish

    No full text
    Contains fulltext : 149461.pdf (publisher's version ) (Closed access
    • …
    corecore