10,364 research outputs found

    Near-infrared spectroscopy of the very low mass companion to the hot DA white dwarf PG1234+482

    Full text link
    We present a near-infrared spectrum of the hot (TeffT_{\rm eff} ≈\approx 55,000 K) DA white dwarf PG 1234+482. We confirm that a very low mass companion is responsible for the previously recognised infrared photometric excess. We compare spectra of M and L dwarfs, combined with an appropriate white dwarf model, to the data to constrain the spectral type of the secondary. We find that uncertainties in the 2MASS HKHK photometry of the white dwarf prevent us from distinguishing whether the secondary is stellar or substellar, and assign a spectral type of L0±\pm1 (M9-L1).Therefore, this is the hottest and youngest (≈106\approx 10^6 yr) DA white dwarf with a possible brown dwarf companion.Comment: 5 pages, 2 figures, accepted by MNRA

    Completion Report: Arkansas State Pesticides in Ground Water Monitoring Project Phase V: Vulnerable areas in Jackson, Monroe, Lawrence and Lonoke Counties

    Get PDF
    In 1996, sixty-seven water samples were drawn from 65 wells, including 62 new wells and 3 wells sampled previously . One Woodruff County well and two Pulaski County wells were resampled. Thirty-two samples were drawn from 30 wells in Monroe County (well #1 was sampled 3 times during this phase) . Ten wells in Jackson County, 12 wells in Lawrence County and 10 wells in Lonoke were also tested (Figures 1-5) . With the completion of Phase V, the number of wells tested has risen to 231 with a total of 258 samples analyzed . Initially, the wells were tested for 13 pesticides and ni~rate. Two more pesticides, aldicarb and carbofuran were added to the analyte list during Phase V. The analyte list is shown in Table 3 . All results from all the wells are listed in Appendix A. Quality control information for these data follow the results. The Phase V Quality Assurance Report is included in this document as Part II

    Density Functional Theory of Inhomogeneous Liquids: II. A Fundamental Measure Approach

    Full text link
    Previously, it has been shown that the direct correlation function for a Lennard-Jones fluid could be modeled by a sum of that for hard-spheres, a mean-field tail and a simple linear correction in the core region constructed so as to reproduce the (known) bulk equation of state of the fluid(Lutsko, JCP 127, 054701 (2007)). Here, this model is combined with ideas from Fundamental Measure Theory to construct a density functional theory for the free energy. The theory is shown to accurately describe a range of inhomogeneous conditions including the liquid-vapor interface, the fluid in contact with a hard wall and a fluid confined in a slit pore. The theory gives quantitatively accurate predictions for the surface tension, including its dependence on the potential cutoff. It also obeys two important exact conditions: that relating the direct correlation function to the functional derivative of the free energy with respect to density, and the wall theorem.Comment: to appear in J. Chem. Phy

    Photoionization and Photoelectric Loading of Barium Ion Traps

    Get PDF
    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3 caption -added reference [15

    Level-Based Analysis of the Population-Based Incremental Learning Algorithm

    Get PDF
    The Population-Based Incremental Learning (PBIL) algorithm uses a convex combination of the current model and the empirical model to construct the next model, which is then sampled to generate offspring. The Univariate Marginal Distribution Algorithm (UMDA) is a special case of the PBIL, where the current model is ignored. Dang and Lehre (GECCO 2015) showed that UMDA can optimise LeadingOnes efficiently. The question still remained open if the PBIL performs equally well. Here, by applying the level-based theorem in addition to Dvoretzky--Kiefer--Wolfowitz inequality, we show that the PBIL optimises function LeadingOnes in expected time O(nλlog⁥λ+n2)\mathcal{O}(n\lambda \log \lambda + n^2) for a population size λ=Ω(log⁥n)\lambda = \Omega(\log n), which matches the bound of the UMDA. Finally, we show that the result carries over to BinVal, giving the fist runtime result for the PBIL on the BinVal problem.Comment: To appea

    The Long and Short of Nuclear Effective Field Theory Expansions

    Get PDF
    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.Comment: 22 pages, 9 figures, references corrected, minor modification
    • 

    corecore