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Abstract

The Population-Based Incremental Learning (PBIL) algorithm uses a convex com-
bination of the current model and the empirical model to construct the next model,
which is then sampled to generate offspring. The Univariate Marginal Distribution
Algorithm (UMDA) is a special case of the PBIL, where the current model is ignored.
Dang and Lehre (GECCO 2015) showed that UMDA can optimise LEADINGONES effi-
ciently. The question still remained open if the PBIL performs equally well. Here, by
applying the level-based theorem in addition to Dvoretzky—Kiefer—Wolfowitz inequality,
we show that the PBIL optimises LEADINGONES in expected time O (n)\ log A + n2)
for a population size A = Q(logn), which matches the bound of the UMDA. Finally,
we show that the result carries over to BINVAL, giving the fist runtime result for the
PBIL on the BINVAL problem.

Index terms— Population-based incremental learning, LeadingOnes, BinVal, running

time analysis, level-based analysis, theory

1 Introduction

Estimation of distribution algorithms (EDAS) are a class of randomised search heuristics
that optimise objective functions by constructing probabilistic models and then sample the
models to generate offspring for the next generation. Various variants of EDA have been
proposed over the last decades; they differ from each other in the way their models are
represented, updated as well as sampled over generations. In general, EDAS are usually
categorised into two main classes: wunivariate and multivariate. Univariate EDAS take ad-
vantage of first-order statistics (i.e. mean) to build a univariate model, whereas multivariate
EDAS apply higher-order statistics to model the correlations between the decision variables.

There are only a few runtime results available for EDAs. Recently, there has been a
growing interest in the optimisation time of the UMDA, introduced by Miihlenbein and
Paaf [11], on standard benchmark functions [4, 13, 8, 7, 14]. Recall that the optimisation
time of an algorithm is the number of fitness evaluations the algorithm needs before a

global optimum is sampled for the first time. Dang and Lehre [4] analysed a variant of

*Preliminary version of this work will appear in the Proceedings of the 15th International Conference on
Parallel Problem Solving from Nature 2018 (PPSN XV).



the UMDA using truncation selection and derived the first upper bounds of O (nAlog\)
and O (nAlog A + n?) on the expected optimisation times of the UMDA on ONEMAX and
LEADINGONES, respectively, where the population size is A = Q(logn). These results were
obtained using a relatively new technique called level-based analysis [3]. Very recently,
Witt [13] proved that the UMDA optimises ONEMAX within O (un) and O (p4/n) when
w > clogn and p > ¢’/nlogn for some constants ¢, ¢’ > 0, respectively. However, these
bounds only hold when A = (14 ©(1))u. This constraint on A and u was relaxed by Lehre
and Nguyen [8], where the upper bound O (An) holds for A = Q(u) and clogn < u = O (y/n)
for some constant ¢ > 0.

The first rigorous runtime analysis of the PBIL [1], was presented very recently by
Wu et al. [14]. In this work, the PBIL was referred to as a cross entropy algorithm.
The study proved an upper bound O (n2+5) of the PBIL with margins [1/n,1 — 1/n] on
LEADINGONES, where A = n'*e, = O(nf/?), n € Q(1) and € € (0,1). Until now, the
known runtime bounds for the PBIL were significantly higher than those for the UMDA.
Thus, it is of interest to determine whether the PBIL is less efficient than the UMDA, or
whether the bounds derived in the early works were too loose.

This paper makes two contributions. First, we address the question above by deriv-
ing a tighter bound O (n)\ log A + n2) on the expected optimisation time of the PBIL on
LEADINGONES. The bound holds for population sizes A = 2 (logn), which is a much weaker
assumption than A = w(n) as required in [14]. Our proof is more straightforward than
that in [14] because much of the complexities of the analysis are already handled by the
level-based method [3].

The second contribution is the first runtime bound of the PBIL on BINVAL. This
function was shown to be the hardest among all linear functions for the cGA [5]. The
result carries easily over from the level-based analysis of LEADINGONES using an identi-
cal partitioning of the search space. This observation further shows that runtime bounds,
derived by the level-based method using the canonical partition, of the PBIL or other non-
elitist population-based algorithms using truncation selection, on LEADINGONES also hold
for BINVAL.

The paper is structured as follows. Section 2 introduces the PBIL with margins as well
as the level-based theorem, which is the main method employed in the paper. Given all
necessary tools, the next two sections then provide upper bounds on the expected optimi-
sation time of the PBIL on LEADINGONES and BINVAL. Finally, our concluding remarks

are given in Section 5.

2 Preliminaries

We first introduce the notations used throughout the paper. Let X' := {0,1}" be a finite

binary search space with dimension n. The univariate model in generation ¢ € N is rep-

(®) (t) (t)

resented by a vector p(*) := (p1’,---,pn’) € [0,1)", where each p;’ is called a marginal.

Let X ft), ey X,(Lt) be n independent Bernoulli random variables with success probabilities
pgt), e ,pff ), Furthermore, let Xi(:tj) = i:i X,Et) be the number of ones sampled from
pgt; = (pgt),..., ;t)) for all 1 <4 < j < n. Each individual (or bitstring) is denoted as
x = (x1,...,o,) € X. We aim at maximising an objective function f : X — R. We are
primarily interested in the optimisation time of these algorithms, so tools to analyse runtime

are of importance. We will make use of the level-based theorem [3].



2.1 Two problems

We consider the two pseudo-Boolean functions: LEADINGONES and BINVAL, which are
widely used theoretical benchmark problems in runtime analyses of EDAs [5, 4, 14]. The
former aims at maximising the number of leading ones, while the latter tries to maximise
the binary value of the bitstring. The global optimum for both functions are the all-ones
bitstring. Furthermore, BINVAL is an extreme linear function, where the fitness-contribution
of the bits decreases exponentially with the bit-position. Droste [5] showed that among all
linear functions, BINVAL is difficult for the cGA. Given a bitstring = (21,...,2,) € X,

the two functions are formally defined as follows:

Definition 1. LEADINGONES(z) := Y i, ;:1 ;.

Definition 2. BINVAL(z) := Y | 2" z,.

2.2 Population-Based Incremental Learning

The PBIL algorithm maintains a univariate model over generations. The probability of a

bitstring = (z1,...,x,) sampled from the current model p is given by

Pr (x | p(“) = ﬁ (pgt))mi (1 —pl(-t)>1imi : (1)
i=1

Let p(® := (1/2,...,1/2) be the initial model. The algorithm in generation ¢ samples
a population of A individuals, denoted as P® := {z(M) 22 . 2N which are sorted
in descending order according to fitness. The pu fittest individuals are then selected to
R

%

(n/p) ;‘:1 xl(»j) for all i € {1,2,...,n}, where 29 is the i-th bit of the j-th individual in

i

derive the next model p*+1) using the component-wise formula p

the sorted population, and n € (0, 1] is the smoothing parameter (sometimes known as the
learning rate). The ratio vy := /A € (0,1) is called the selective pressure of the algorithm.
Univariate EDAs often employ margins to avoid the marginals to fix at either 0 or 1. In
particular, the marginals are usually restricted to the interval [1/n,1 — 1/n] after being
updated, where the quantities 1/n and 1 — 1/n are called the lower and upper borders,
respectively. The algorithm is called the PBIL with margins. Algorithm 1 gives a full
description of the PBIL (with margins).

Algorithm 1: PBIL with margins
t0; p®) « (1/2,1/2,...,1/2)
repeat
for j=1,2,..., A do
sample an offspring £0) ~ Pr(- | p*)) as defined in (1)
L evaluate the fitness f(z0))

sort P« {zM 2@ 2™} such that f(z(M) > f(z@) > ... > f(aW)
fori=1,2,...,ndo

L P max {1/n,min {1 —1/n, (1 — " + (n/p) e xgj)}}
t+1+1

until termination condition is fulfilled




Algorithm 2: Non-elitist population-based algorithm

t  0; create initial population P(*)
repeat
fori=1,...,\do
t sample P p(P®)
t—t+1

until termination condition is fulfilled

2.3 Level-based analysis

Introduced in [3], the level-based theorem is a general tool that provides upper bounds
on the expected optimisation time of many non-elitist population-based algorithms on a
wide range of optimisation problems [3, 8, 4]. The theorem assumes that the algorithm to
be analysed can be described in the form of Algorithm 2, which maintains a population
P® ¢ xX* where X is the space of all populations with size \. The theorem is general
since it never assumes specific fitness functions, selection mechanisms, or generic operators
like mutation and crossover. Furthermore, the theorem assumes that the search space X can
be partitioned into m disjoint subsets Aj, ..., A,,, which we call levels, and the last level
A,, consists of all global optima of the objective function. The theorem is formally stated
in Theorem 1 [3]. We will use the notation [n] := {1,2,...,n} and As; := UL Aj.

Theorem 1 (LEVEL-BASED THEOREM). Given a partition (A;);cp,, of X, define T =
min{t\ | |[P® N A,,| > 0}, where for allt € N, P®) € X is the population of Algorithm 2
in generation t. Denote y ~ D(PW). If there exist z1,...,2zm—1,0 € (0,1], and v € (0,1)
such that for any population P*) € X,

(G1) for each level j € [m — 1], if [P N Asj| > o\ then Pr(y € Asjp1) > zj.

(G2) for each level j € [m—2] and all v € (0,70], if [P NAs;| > v\ and [PONAs; 4] >
VX then Pr(y € Asj1) > (1+6) 7.

(G3) and the population size A € N satisfies A > ( 4 ) In (2%@) where z, = minjem_1){zj},

Y062
then )
8 6O 1
ET <|—= 1 _— — .
Tl < <52> ; {)\ n(4+2j5>\> * Zj]

Algorithm 2 assumes a mapping D from the space of populations X* to the space of
probability distributions over the search space. The mapping D is often said to depend on
the current population only [3]; however, it is unnecessarily always the case, especially for the
PBIL with a sufficiently large offspring population size A. The rationale behind this is that
in each generation the PBIL draws A samples from the current model p(*), that correspond
to A individuals in the current population, and if the number of samples A is sufficiently
large, it is highly likely that the empirical distributions for all positions among the entire
population cannot deviate too far from the true distributions, i.e. marginals pgt). Moreover,
the theorem relies on three conditions (G1), (G2) and (G3); thus, as long as these three can
be fully verified, the PBIL, whose model is constructed from the current population P(*) in

addition to the current model p(*), is still eligible to the level-based analysis.



2.4 Other tools

In addition to the level-based theorem, we also make use of some other mathematical results.
First of all is the Dvoretzky—Kiefer—Wolfowitz inequality [9], which provides an estimate on
how close an empirical distribution function will be to the true distribution from which the
samples are drawn. The following theorem follows by replacing € = ¢’/ into [9, Corollary
1].

Theorem 2 (DKW INEQUALITY). Let X1,..., X be A i.i.d. real-valued random variables
with cumulative distribution function F'. Let F be the empirical distribution function which
is defined by F)(x) := (1/)) Zj‘zl Iyx, < «y- For any A € N and € > 0, we always have

Pr (sup |}7_'A(;v) - F(x)‘ > 5) <22
zER

Furthermore, properties of majorisation between two vectors are also exploited. The con-

cept is formally defined in Definition 3 [6], followed by its important property (in Lemma 1)

that we use intensively throughout the paper.

Definition 3. Given vectors p(t) := (pgl), . 7p%l)) and p?) = (p:(LQ), o 7pg)), where pgl) >
pgl) > (1) and similarly for the pl(z)s. Vector pV) is said to majorise vector p®, in

symbols p(l) = p?), zfp(1 > p(2) Zl 1 pgl) > ZZ | p(2) and Zl 1p§1) = Z? 1p1(2)

Lemma 1 ([2]). Let Xy,...,X, be n independent Bernoulli random variables with success
probabilities py, ..., pn, respectively. Denote p := (p1,p2,...,pn); let S(p) :== > X; and
Dy :={p:p; €[0,1], i € [n], Y i ,pi = A}. For two vectors pM, p@ e Dy, if p() < p
then Pr (S(pt) = n) > Pr (S(p®) =n).

Lemma 2 (MAIN LEMMA). Let p) and p® € Dy be two vectors as defined in Lemma 1,
where all components in p') are arranged in descending order. Let Z(l) = (251), .. .,27(11))
where each zi(l) =(1-n) pgl)—&-n, and 2(?) = (zéz), 2D ), where each z = (1-n) PP+

n for any constant n € (0,1]. If p@ = p() | then z(2) = 2D,

Proof. For all j € [n — 1], it holds that >7_, zi(z) > Zj zil since Y7 1p§2) >S5 1p§1)
Furthermore, if j = n, then > | 1(2) = > ) due to Zi:1p§2) = > pM. By

212 =111

Definition 3, 22 > (1), O

3 Runtime Analysis of the PBIL on LEADINGONES

We now show how to apply the level-based theorem to analyse the runtime of the PBIL.
We use a canonical partition of the search space, where each subset A; contains bitstrings

with exactly j leading ones.
Aj = {x €{0,1}" | LEADINGONES(z) = j}. (2)

Conditions (G1) and (G2) of Theorem 1 assume that there are at least 7oA individuals in
levels A>; in generation t. Recall v := p/\. This implies that the first j bits among the
w fittest individuals are all ones. Denote p( ) = (1/)) Z)‘ 1(_]' ) as the frequencies of ones
at position ¢ in the current population. We first show that under the assumption of the
two conditions of Theorem 1 and with a population size A = 2 (logn), the first j marginals

cannot be too close to the lower border 1/n with probability at least 1 —n =),



Lemma 3. If [P N As | > v\ and A > c((1+ 1/¢)/70)* In(n) for any constants ¢, & > 0
and o € (0,1), then it holds with probability at least 1 — 2n=2¢ that pgt) > y0/(1+¢) for all
i€ [j].

Proof. Consider an arbitrary bit i € [j]. Let Q; be the number of ones sampled at position
¢ in the current population, and the corresponding empirical distribution function of the
number of zeros is F)\(0) = (1/}) 23\21 ]l{zgj)go} =A=-Q)/A=1- ]32@, and the true
distribution function is F'(0) = 1 — pgt). The DKW inequality (see Theorem 2) yields
that Pr(f)z(.t) — pl(.t) > ¢) < Pr(|]§l(.t) —pgt)\ > ¢) < 2e=22* for all ¢ > 0. Therefore, with
probability at least 1 — 2e=22%" we have ﬁz(-t) - pl(-t) < ¢ and, thus, pgt) > ]32@ — P> — ¢
since ﬁz(-t) > A /A = 7o due to | P NA>;| > v0A. We then choose ¢ < evyy/(1+¢) for some
constant € > 0 and A > ¢((1 + 1/¢)/70)?In(n). Putting everything together, it holds that
pgt) > (1 —¢/(1+¢)) = /(1 + ¢) with probability at least 1 — 2n=2¢. O

Given the p top individuals having at least j leading ones, we now estimate the proba-

bility of sampling j leading ones from the current model p(*).

Lemma 4. For any non-empty subset I C [n], define Cy:= {x € {0,1}" | [[;c;z: = 1}. If
[P N Cr| > o) and X > c((1+ 1/€)/v0)? In(n) for any constants € > 0, 7o € (0,1), then
it holds with probability at least 1 — 2n~2¢ that ¢V := [Lics pz(»t) >v/(1+¢).

Proof. We prove the statement using the DKW inequality (see Theorem 2). Let m = |I|.
scr Yi be the number

of one-bits in bit-positions I. By the assumption |P®)NC;| > voA on the current population,

Given an offspring sample Y ~ p(®) from the current model, let Y7 := 3

the empirical distribution function of Y; must satisfy Fy (m—1) = %Z;‘:l Ty, j<m-13 <
1—¢®, where ¢(*) > ~q is the fraction of individuals in the current population with j leading
ones, and the true distribution function satisfies F'(m —1) =1 — ¢Y. The DKW inequality
yields that Pr(¢®) —¢® > ¢) < Pr(|§® —¢®| > ¢) < 2¢722¢" for all ¢ > 0. Therefore, with
probability at least 1 — 2e=2*¢” it holds ¢ — ¢® < ¢ and, thus, ¢ > ¢® — ¢ >~y — ¢.
Choosing ¢ := ev0/(1 + ), we get ¢©) > 4o(1 — /(1 +€)) = 70/(1 4 €) with probability at
least 1 — 2e—2¢"A >1—92n2.

O

Given the current level is j, we speak of a success if the first j marginals never drop
below 79/(1 + €); otherwise, we speak of a failure. If there are no failures at all, let us
assume that O (n log A +n?/ )\) is an upper bound on the expected number of generations of
the PBIL on LEADINGONES. The following lemma shows that this is also the the expected
optimisation time of the PBIL on LEADINGONES.

Lemma 5. If the expected number of generations required by the PBIL to optimise LEADINGONES
in case of no failure is at most t* € O (n log A + n2/)\) regardless of the initial probability
vector of the PBIL, the expected number of generations of the PBIL on LEADINGONES is

at most 4t*.

Proof. From the point when the algorithm starts, we divide the time into identical phases,
each lasting t* generations. Let & denote the event that the i-th interval is a failure for
i € N. According to Lemma 3, Pr(&;) < 2n72¢ O(nlog A + n%/\) = O(n~¢*+2) by union
bound for another constant ¢’ > 0 when the population is of at most exponential size, that
is A < 29" where a > 0 is a constant with respect to n, and the constant ¢ large enough such
that ¢ > 2, and Pr (&1 AE2) > 1—Pr(&) —Pr(&) >1— O(n~¢*2) by union bound. Let



T be the number of generations performed by the algorithm until a global optimum is found
for the first time. We know that E [T | Ajen &) < t*, and Pr (T < 2t* | Ajen &) > 1/2
since Pr (T > 2t* | Ajen €;) < 1/2 by Markov’s inequality [10]. We now consider each pair
of two consecutive phases. If there is a failure in a pair of phases, we wait until that pair

has passed by and then repeat the arguments above as if no failure has ever happened. It
holds that

E[T|ENE] <2t"Pr (T <2t* |E1AE) + (2t +E[T])Pr (T > 2t* | €1 A Es)
=2t +Pr (T >2t" | E1 AN E) E[T]
< 2t* 4 (1/2)E[T]

since Pr (T < 2t* | E1 AE2) > Pr (T < 2t* | Nien €;) > 1/2. Substituting the result into
the following yields

E[T]=Pr(E1 AE)E [T | E1 AE] +Pr (&1 VE) (2t" + E[T))
< Pr(E1NE) (26" + (1/2)E[T]) + Pr (& V &) (2t* + E[T])
=2t" + ((1/2)Pr (E1 A E2) + Pr (& V &))E[T]
=2t"+E[T] - (1/2)Pr (&1 A &) E[T].

Thus, E[T] < 4¢*/Pr (1 A E2) = 4t* (1 + o(1)) = 4t*. O

By the result of Lemma 5, the phase-based analysis that is exploited until there is a
pair with no failure only leads to a multiplicative constant in the expectation. We need
to calculate the value of ¢t* that will also asymptotically be the overall expected number
of generations of the PBIL on LEADINGONES. We now give our runtime bound for the
PBIL on LEADINGONES with sufficiently large population A. The proof is very straightfor-
ward compared to that in [14]. The floor and ceiling functions of z € R are |x] and [z],

respectively.

Theorem 3. The PBIL with margins and offspring population size A > clogn for a suf-
ficiently large constant ¢ > 0, parent population size p = Yo\ for any constant vy sat-
isfying vo < nl€1H1/((1 4 6)e) where &€ = In(pg)/(po — 1) and po = v0/(1 + €) for any
positive constants §, € and smoothing parameter n € (0,1], has expected optimisation time
O (nAlog A + n*) on LEADINGONES.

Proof. We strictly follow the procedure recommended in [3].

Step 1: Recall that we use the canonical partition, defined in (2), in which each subset
A;j contains individuals with exactly j leading ones. There are a total of m = n + 1 levels
ranging from Ay to A,.

Step 2: Given [P N As;| > v\ = p and [P® N As;q| > 4\, we prove that the
probability of sampling an offspring in A>;4; in generation ¢ + 1 is lower bounded by
(14 0)~y for some constant ¢ > 0.

t t
CIC)

Lemma 1 asserts that if we can find a vector z(1) = (z that majorises pg ) ., then

the probability of obtaining j successes from a Poisson-binomial distribution with parameters

gtz is lower bounded by the same distribution with parameters j and z(!). Following
, We compare . with another sequence of independent Bernoulli random
14 X", X" with anoth f independent Bernoulli rand

variables th) Z](t) Wlth success probabilities z( ) - (t) . Note that Z® : Zj Z(t)

Define m := L(ZJ 1pz —jpo)/(l— = —po)J where py := {7, and let Zf ), 7 all have

success probability z§ )= .. = (t) = n, Z,SZ_Q, .. Z( ) get po and p0551b1y a random

variable Z" )+1 takes intermediate value [po, 1 — 1] to guarantee S pgt) I Z(t).

jJ and p



Since ZZ 1pzt) >3-(IT=, pZ )1/3 >3- pl/j by the Arithmetic Mean-Geometric Mean in-
equality (see Lemma 7 in the Appendix) and Lemma 4, we get m > [j(p 0/] —po)/ (1 =L —po)].

Let us consider the following function:

1/5 1/5
o) =g BB p
1—po 1—=po
This function has a horizontal asymptote at y = —&, where £ := % (see calculation in the

Appendix). Thus, m > j — [£] for all j > 0.

Note that we have just performed all calculations on the current model in generation t.
The PBIL then updates the current model p(*) to obtain p**1) using the component-wise
(1) — =(1 —n)pgt) m - :r( ). Forall i € [j], we know that > %_, :r(k) = u due
to the assumption of condition (G2). After the model is updated, we obtain

formula p;

o 2V =1 Lforalli<j—[e],

. zi(t+1)

>(1—=n)po+n=niorall j—[¢] <i<j,and

t+ t
°p§+1)2(1*n)p§ll+n%2n'y due to 34_ ol = A,

Let us denote z(Hl) (1—-n)z ) + n. Lemmas 1 and 2 assert that 2(t+1) majorises pg ]H),

and Pr(X (t.H) =j) > Pr(Z*+1) = j). In words, the probability of sampling an offspring in

Asjin generatlon t+ 1 is lower bounded by the probability of obtaining j successes from a

Poisson-binomial distribution with parameters j and z(**1). More precisely, at generation
t+ 1,
Pr(X{ = j+1) > Pr(x{V =) - Pr(x {7 = 1)
> Pr(Z0D =) pf > (L= 1/np gy g > (14 0)s,

where (1 — %)jfm > % and vy < % for any constant 6 > 0. Thus, condition (G2) of
Theorem 1 is verified.

Step 3: Given that |P®") N As;| > 7\, we aim at showing that the probability of
sampling an offspring in A>;4; in generation ¢ + 1 is at least z;. Note in particular that
Lemma 4 yields Pr(X(tH) J) > 1 7" . The probability of sampling an offspring in A>;1

in generation ¢ 4 1 is lower bounded by

t+1 . t+1 Yo 1
Pr(X{5 ) =) P = 1) > o =gy

where Pr(XJ(f;l) =1) = pgt_:_ll) >

with z; = z, =

. Therefore, condition (G1) of Theorem 1 is satisfied

1
- (1+E)n'

Step 4: Condition (G3) of Theorem 1 requires a population size A\ = £ (logn). This
bound matches with the condition on A > clogn for some sufficiently large constant ¢ > 0
from the previous lemmas. Overall, A = Q (logn).

rel+1

Step 5: When Zj = (1172)71 ?1—&-76)6
n € (0,1] and sufficiently large ¢ > 0, all conditions of Theorem 1 are verified. Using that
In (L)‘) < In (35/\) an upper bound on the expected optimisation time of the PBIL on

4+0z;
LEADINGONES is guaranteed as follows.

()5 (7))

where vy < and A > clogn for some constants € > 0,

o +0(n®) € O (nAlogA+n?).



Hence, the expected number of generations t* is O (n log A\ + ";) for a sufficiently large
A in the case of no failure and, thus, meets the assumption in Lemma 5. The expected
optimisation time of the PBIL on LEADINGONES is still asymptotically O (n)\ log A + nz).
This completes the proof. O

Our improved upper bound of O (n2) on the optimisation time of the PBIL with pop-
ulation size A = O (logn) on LEADINGONES is significantly better than the previous bound
@ (n2+5) from [14]. Our result is not only stronger, but the proof is much simpler as most
of the complexities of the population dynamics of the algorithm is handled by Theorem 1

3]. Furthermore, we also provide specific values for the multiplicative constants, i.e. 32 and
5
%&25) for the terms nAlog A and n?, respectively (see Step 5 in Theorem 3). Moreover,

the result also matches the runtime bound of the UMDA on LEADINGONES for a small

population A = O (logn) [4].
. . . . re1
Note that Theorem 3 requires some condition on the selective pressure, that is vy < %

;)Ef § and po := {i; for any positive constants J, e and smoothing parameter

€ (0,1]. Although for practical applications, we have to address these constraints to find

where & =

a suitable set of values for g, this result here tells us that there exists some settings for the
PBIL such that it can optimise LEADINGONES within O (n)\ log A + n2) time in expectation.

4 Runtime Analysis of the PBIL on BINVAL

We first partition the search space into non-empty disjoint subsets Ao, ..., A,.

Lemma 6. Let us define the levels as A; = {x € {0,1}" | Zgzl 27—t < BINVAL(7) <
Zfill 2"~} for j € [n] U {0}, where Z?:l 2n=1 = 0. If a bitstring x has ezactly j leading
ones, i.e. LEADINGONES(x) = j, then x € A;.

Proof. Consider a bitstring # = 190{0,1}"7~!. The fitness contribution of the first j
leading ones to BINVAL(z) is Z{Zl 2"=% The (j + 1)-th bit has no contribution, while that
of the last n — j — 1 bits ranges from zero to >i ;,,2"" = STl = onitl .
So overall, Y°7_ 27~ < BINVAL(z) < S7F 277 — 1 < S27F1 97~ Hence, the bitstring =
belongs to level A;. O

In both problems, all that matters to determine the level of a bitstring is the position
of the first 0-bit when scanning from the most significant to the least significant bits. Now
consider two bitstrings in the same level for BINVAL, their rankings after the population
is sorted are also determined by some other less significant bits; however, the proof of
Theorem 3 never takes these bits into account. Thus, the following corollary yields the first
upper bound on the expected optimisation time of the PBIL and the UMDA (when n = 1)
for BINVAL.

Corollary 1. The PBIL with margins and offspring population size A > clogn for a suf-
ficiently large constant ¢ > 0, parent population size p = ~yA for any constant vy sat-
isfying o < 0¥/ (1 + 8)e) where & = In(po)/(po — 1) and po := /(1 +¢€) for any
positive constants 6, € and smoothing parameter n € (0,1], has expected optimisation time
O (nAlog A + n?) on BINVAL.



5 Conclusions

Runtime analyses of EDAS are scarce. Motivated by this, we have derived an upper bound
of O (n)\ log A\ + n2) on the expected optimisation time of the PBIL on both LEADINGONES
and BINVAL for a population size A = Q (logn). The result improves upon the previously
best-known bound O (n?*¢) from [14], and requires a much smaller population size A =
Q (logn), and uses relatively straightforward arguments. We also presents the first upper
bound on the expected optimisation time of the PBIL on BINVAL.

Furthermore, our analysis demonstrates that the level-based theorem can yield runtime
bounds for EDAS whose models are updated using information gathered from the current
and previous generations. An additional aspect of our analysis is the use of the DKW
inequality to bound the true distribution by the empirical population sample when the
number of samples is large enough. We expect these arguments will lead to new results in

runtime analysis of evolutionary algorithms.

Appendix

Lemma 7 (AM-GM INEQUALITY [12]). Let a1, ...,2z, be n non-negative real numbers. It

always holds that

I1+I2+"'+an
2 Yx1 -T2 Ty,

n

and equality holds if and only if x1 = x9 = -+ = xy,.

L i

. l-po 1/j
po—1 . STTA* 5 . .

- =—. Applying L’'Hopital’s rule yields:

PROOF OF HORIZONTAL ASYMPTOTE. The function can be rewritten as g(j) =

Denote t := 1/4, we obtain g(t) = ——

1—po
i t ] 1 1
llm g(]) — llm g(t) _ 1My 0+ (pO npo) _ 1 Po - _ 1 Po )
J—+oo t—0+ 1 —1po 1 —1po po—1
O
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