26 research outputs found

    Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties.

    Get PDF
    AbstractTwo human mammary carcinoma cell variants, MCF-7/AZ and MCF-7/6, show the same composition in their glycosphingolipid-enriched microdomain (GEM) with regard to globo-series structures Gb3, Gb4, Gb5, monosialyl-Gb5, GM2, and cSrc and FAK. Both variants are non-invasive into collagen gel layer, and showed similar motility in wound migration assay. Whereas invasiveness and motility of MCF-7/AZ cells were enhanced greatly by treatment with mAb RM1 directed to monosialyl-Gb5, the same RM1 treatment had no effect on MCF-7/6. cSrc and FAK of MCF-7/AZ, but not MCF-7/6, were activated by RM1 treatment. Thus, malignancy of MCF-7 is highly dependent on monosialyl-Gb5, and its activation of cSrc and FAK in GEM

    Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells

    No full text
    Complex interplays among proteins, lipids and carbohydrates can alter the phenotype and are suggested to have a crucial role in tumour metastasis. Our previous studies indicated that a complex of the GSLs (glycosphingolipids), AsGM1 (asialo-GM1), which lacks α2,3-linked sialic acid, and α2β1 integrin receptors is responsible for the metastatic behaviour of C4-2B prostate cancer cells. Herein, we identified and addressed the functional significance of changes in sialylation during prostate cancer progression. We observed an increase in α2,3-linked sialic acid residues on α2 subunits of α2β1 integrin receptors, correlating with increased gene expression of α2,3-STs (sialyltransferases), particularly ST3GAL3. Cell surface α2,3-sialylation of α2 subunits was required for the integrin α2β1-dependent cell adhesion to collagen type I and the same α2,3-linked sialic acid residues on the integrin receptor were responsible for the interaction with the carbohydrate moiety of AsGM1, explaining the complex formation between AsGM1 and α2β1 integrin receptors. These results provide novel insights into the role of sialic acids in the organization and function of important membrane components in invasion and metastatic processes
    corecore