2,901 research outputs found

    Harvardiana : March Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4967/thumbnail.jp

    Polarization dependence of four-wave mixing in a degenerate two-level system

    Get PDF
    Nearly degenerate four-wave mixing (NDFWM) within a closed degenerate two-level atomic transition is theoretically and experimentally examined. Using the model presented by A. Lezama et al [Phys. Rev. A 61, 013801 (2000)] the NDFWM spectra corresponding to different pump and probe polarization cases are calculated and discussed. The calculated spectra are compared to the observation of NDFWM within the 6S1/2(F=4)→6P3/2(F=5)6S_{1/2}(F=4)\to 6P_{3/2}(F=5) transition of cesium in a phase conjugation experiment using magneto optically cooled atomsComment: 10 pages, 13 figures; submitted to Phys. Rev.

    Double marking revisited

    Get PDF
    In 2002, the Qualifications and Curriculum Authority (QCA) published the report of an independent panel of experts into maintaining standards at Advanced Level (A-Level). One of its recommendations was for: ‘limited experimental double marking of scripts in subjects such as English to determine whether the strategy would signi-ficantly reduce errors of measurement’ (p. 24). This recommendation provided the impetus for this paper which reviews the all but forgotten literature on double marking and considers its relevance now

    Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies

    Full text link
    We use spectroscopic observations of a sample of 82 HII regions in 76 blue compact galaxies to determine the primordial helium abundance Yp and the slope dY/dZ from the Y-O/H linear regression. To improve the accuracy of the dY/dZ measurement, we have included new spectrophotometric observations of 33 HII regions which span a large metallicity range, with oxygen abundance 12+log(O/H) varying between 7.43 and 8.30 (Zsun/30<Z<Zsun/4). For a subsample of 7 HII regions, we derive the He mass fraction taking into account known systematic effects, including collisional and fluorescent enhancements of HeI emission lines, collisional excitation of hydrogen emission, underlying stellar HeI absorption and the difference between the temperatures Te(HeII) in the He^+ zone and Te(OIII) derived from the collisionally excited [OIII] lines. We find that the net result of all the systematic effects combined is small, changing the He mass fraction by less than 0.6%. By extrapolating the Y vs. O/H linear regression to O/H=0 for 7 HII regions of this subsample, we obtain Yp=0.2421+/-0.0021 and dY/dO=5.7+/-1.8, which corresponds to dY/dZ=3.7+/-1.2, assuming the oxygen mass fraction to be O=0.66Z. In the framework of the standard Big Bang nucleosynthesis theory, this Yp corresponds to Omega_b h^2 = 0.012^+0.003_-0.002, where h is the Hubble constant in units of 100 km/s/Mpc. This is smaller at the 2sigma level than the value obtained from recent deuterium abundance and microwave background radiation measurements. The linear regression slope dY/dO=4.3+/-0.7 (corresponding to dY/dZ=2.8+/-0.5) for the whole sample of 82 HII regions is similar to that derived for the subsample of 7 HII regions, although it has a considerably smaller uncertainty.Comment: 53 pages, 3 Postscript figures, accepted for publication in the Astrophysical Journa

    Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates

    Full text link
    We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k−5/3k^{-5/3} power law over almost a decade of length or wavenumber (kk) scales. The kinetic energy spectrum of regime (C) exhibits a clear k−3/2k^{-3/2} power law associated with an inertial range for weak-wave turbulence, and a k−7/2k^{-7/2} power law for high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.Comment: 11 pages, 10 figures. Minor updates to text and figures 1, 2 and

    Communication: The Rosenfeld-Tarazona expression for liquids’ specific heat:A numerical investigation of eighteen systems

    Get PDF
    We investigate the accuracy of the expression of Rosenfeld and Tarazona (RT) for the excess isochoric heat capacity, C_V^{ex} \propto T^{-2/5}, for eighteen model liquids. Previous investigations have reported no unifying features of breakdown for the RT expression. Here liquids with different stoichiometric composition, molecular topology, chemical interactions, degree of undercooling, and environment are investigated. We find that the RT expression is a better approximation for liquids with strong correlations between equilibrium fluctuations of virial and potential energy, i.e., Roskilde simple liquids [Ingebrigtsen et al., Phys. Rev. X 2, 011011 (2012)]. This observation holds even for molecular liquids under severe nanoscale confinement, the physics of which is completely different from the original RT bulk hard-sphere fluid arguments. The density dependence of the specific heat is predicted from the isomorph theory for Roskilde simple liquids, which in combination with the RT expression provides a complete description of the specific heat's density and temperature dependence.Comment: 6 page
    • 

    corecore