7 research outputs found

    Contribution to High Voltage AC/DC conversion

    No full text
    Le courant alternatif (AC) se prêtant bien à la majorité des problématiques de production, de transport et de distribution de l'électricité, on comprend qu'il soit massivement utilisé. Cependant, depuis plus d'un siècle, les bénéfices du courant continu haute tension (HVDC, pour High Voltage Direct Current) pour les longues distances sont bien connus. Aux interfaces, des convertisseurs AC/DC sont requis, leur composition évoluant au fil des avancées technologiques. Après avoir présenté les spécificités du HVDC et les contraintes qu'il introduit sur les convertisseurs AC/DC, ce manuscrit se focalise sur trois topologies : Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) et Series Bridge Converter (SBC). Elles sont présentées, dimensionnées et analysées en détail, puis comparées de façon quantitative en utilisant des indicateurs de performance originaux. Il en ressort que le MMC et le SBC sont particulièrement intéressants. La méthode de commande conventionnelle du MMC est ensuite présentée et ses propriétés structurelles sont mises en évidence. Une première loi de commande originale est présentée, avec des performances similaires mais une complexité inférieure à l'état de l'art. La seconde est non linéaire, basée sur la théorie de la platitude différentielle, et permet un suivi de puissance très rapide tout en assurant la stabilité exponentielle globale du système. Ces lois de commande sont évaluées en simulation, avec un modèle moyen et un modèle détaillé intégrant 180 sous-modules par bras. La dernière partie concerne le SBC. Après l'avoir modélisé, des résultats concernant une analyse structurelle de la topologie sont présentés ainsi qu'une loi de commande originale. Le rôle fondamental du transformateur pour les convertisseurs à structure série comme le SBC est souligné. Enfin, les performances de la loi de commande proposée sont testées en simulation.As Alternating Current (AC) is well suited for most of the production, transmission, and distribution applications, its massive use is easy to understand. However, for over a century, the benefits of High Voltage Direct Current (HVDC) for long-distance energy transmission are well known. To connect both, AC/DC converters are mandatory, whose nature evolves with technological progress. After the problematic induced by HVDC on AC/DC converters is presented, this manuscript is focused on three topologies: Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) and Series Bridge Converter (SBC). They are presented, sized, analyzed thoroughly, and compared in quantitative terms, using original key performance indicators. It appears that MMC and SBC are particularly promising. The conventional control method of the MMC is then presented, and its structural properties are highlighted. A first original control law is presented, with similar performances but less complexity than the state-of-the-art. A second control law, non-linear and based on differential flatness theory, is introduced. It allows a very fast power tracking response while ensuring the global exponential stability of the system. These control laws are tested in simulation, using an average model and a detailed model with 180 sub-modules per arm. The last part is dedicated to the SBC. After a modeling step, some results regarding its structural analysis are presented, and an original control law is introduced. The essential role of the transformer for series converters like the SBC is highlighted. Finally, the performance of the proposed control law is assessed in simulation

    Contribution à la conversion AC/DC en Haute Tension

    No full text
    As Alternating Current (AC) is well suited for most of the production, transmission, and distribution applications, its massive use is easy to understand. However, for over a century, the benefits of High Voltage Direct Current (HVDC) for long-distance energy transmission are well known. To connect both, AC/DC converters are mandatory, whose nature evolves with technological progress. After the problematic induced by HVDC on AC/DC converters is presented, this manuscript is focused on three topologies: Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) and Series Bridge Converter (SBC). They are presented, sized, analyzed thoroughly, and compared in quantitative terms, using original key performance indicators. It appears that MMC and SBC are particularly promising. The conventional control method of the MMC is then presented, and its structural properties are highlighted. A first original control law is presented, with similar performances but less complexity than the state-of-the-art. A second control law, non-linear and based on differential flatness theory, is introduced. It allows a very fast power tracking response while ensuring the global exponential stability of the system. These control laws are tested in simulation, using an average model and a detailed model with 180 sub-modules per arm. The last part is dedicated to the SBC. After a modeling step, some results regarding its structural analysis are presented, and an original control law is introduced. The essential role of the transformer for series converters like the SBC is highlighted. Finally, the performance of the proposed control law is assessed in simulation.Le courant alternatif (AC) se prêtant bien à la majorité des problématiques de production, de transport et de distribution de l'électricité, on comprend qu'il soit massivement utilisé. Cependant, depuis plus d'un siècle, les bénéfices du courant continu haute tension (HVDC, pour High Voltage Direct Current) pour les longues distances sont bien connus. Aux interfaces, des convertisseurs AC/DC sont requis, leur composition évoluant au fil des avancées technologiques. Après avoir présenté les spécificités du HVDC et les contraintes qu'il introduit sur les convertisseurs AC/DC, ce manuscrit se focalise sur trois topologies : Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) et Series Bridge Converter (SBC). Elles sont présentées, dimensionnées et analysées en détail, puis comparées de façon quantitative en utilisant des indicateurs de performance originaux. Il en ressort que le MMC et le SBC sont particulièrement intéressants. La méthode de commande conventionnelle du MMC est ensuite présentée et ses propriétés structurelles sont mises en évidence. Une première loi de commande originale est présentée, avec des performances similaires mais une complexité inférieure à l'état de l'art. La seconde est non linéaire, basée sur la théorie de la platitude différentielle, et permet un suivi de puissance très rapide tout en assurant la stabilité exponentielle globale du système. Ces lois de commande sont évaluées en simulation, avec un modèle moyen et un modèle détaillé intégrant 180 sous-modules par bras. La dernière partie concerne le SBC. Après l'avoir modélisé, des résultats concernant une analyse structurelle de la topologie sont présentés ainsi qu'une loi de commande originale. Le rôle fondamental du transformateur pour les convertisseurs à structure série comme le SBC est souligné. Enfin, les performances de la loi de commande proposée sont testées en simulation

    Open-Delta SBC: a New Converter Topology with Low Number of Sub-Modules for MV applications

    No full text
    International audienceMedium voltage direct current (MVDC) technology has been experiencing a great boom of interest in recent years. This paper aims at giving a contribution to this field by proposing a new converter topology for MVDC applications. This topology is characterized by a low number of sub-modules (SMs) which is strongly related to the converter footprint and complexity. The new topology sizing is compared to the modular multilevel converter (MMC) for the same requirements to highlight advantages and disadvantages of the proposed solution

    Rapid Evaluation Method for Modular Converter Topologies

    No full text
    The success of modular multilevel converters (MMCs) in high-voltage direct current (HVDC) applications has fueled the research on modular converter topologies. New modular converter topologies are often proposed, discussed, and sometimes applied in HVDC, as well as other industrial application such as STATCOMs, DC/DC HVDC, medium-voltage direct current (MVDC), etc. The performance evaluation of new modular converter topologies is a complex and time-consuming process that typically involves dynamic simulations and the design of a control system for the new converter topology. Sadly, many topologies do not progress to the implementation stage. This paper proposes a set of key performance indicators (KPIs) related to the cost and footprint of the converter and a procedure designed to rapidly evaluate these indicators for new converter topologies. The proposed methodology eliminates the need for dynamic simulations and control-system design, and is capable of identifying whether a particular converter is worth considering or not for further studies of a specific application, depending on the operating requirements. Thanks to the method outlined in this work and via the key parameters quantifying the “relevance” of the analyzed converters, promising topologies were easily identified, while the others could be rapidly discarded, resulting in saving valuable time in the study of the solutions that have a real potential. The proposed method is first described from a general point of view and then applied to a case study of the new converter topology—Open-Delta CLSC—and its application in two use cases

    Structural Analysis and Modular Control Law for Modular Multilevel Converter (MMC)

    No full text
    International audienceThis paper proposes an in-depth analysis from the control point of view of dynamic models of a modular multilevel converter (MMC) for high-voltage direct current (HV-DC) application. Firstly, a generic method of analysis is presented for a natural arm-level state-space model. Its structural analysis highlights the decoupled nature of the MMC. Secondly, the well-known sum and difference of the upper and lower arm state and control variables is considered to obtain a (Σ∕Δ) model. This transformation leads to a coupling between state and control variables and to an increase of the system complexity. Using the analysis results of the natural model and the (Σ∕Δ) model, an original arm-modular control is finally proposed. The simulation results show the effectiveness of the proposed control, which is simpler to design compared to a conventional (Σ∕Δ) control

    Polynomial multi-variable control strategy for flux balancing in Dual Active Bridge Converter

    No full text
    International audienceAn attractive option for the Dual Active Bridge converter is to integrate the AC coil inside the transformer, using its leakage inductance. However, this complicates the flux balancing process. To address that, a novel model and a multi-variable linear control for power and magnetizing average currents are proposed

    Open-Delta SBC: a New Converter Topology with Low Number of Sub-Modules for MV applications

    No full text
    International audienceMedium voltage direct current (MVDC) technology has been experiencing a great boom of interest in recent years. This paper aims at giving a contribution to this field by proposing a new converter topology for MVDC applications. This topology is characterized by a low number of sub-modules (SMs) which is strongly related to the converter footprint and complexity. The new topology sizing is compared to the modular multilevel converter (MMC) for the same requirements to highlight advantages and disadvantages of the proposed solution
    corecore