27 research outputs found

    LMTK3 confers chemo-resistance in breast cancer

    Get PDF
    Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and postchemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer

    Serial analysis of circulating tumor cells in metastatic breast cancer receiving first-line chemotherapy

    Get PDF
    Background: We examined the prognostic significance of circulating tumor cell (CTC) dynamics during treatment in metastatic breast cancer (MBC) patients receiving first-line chemotherapy. Methods: Serial CTC data from 469 patients (2,202 samples) were used to build a novel latent mixture model to identify groups with similar CTC trajectory (tCTC) patterns during the course of treatment. Cox regression was used to estimate hazard ratios for progression-free survival (PFS) and overall survival (OS) in groups based on baseline CTCs (bCTC), combined CTC status at baseline to the end of cycle 1 (cCTC), and tCTC. Akaike Information Criterion (AIC) was used to select the model that best predicted PFS and OS. Results: Latent mixture modeling revealed 4 distinct tCTC patterns: undetectable CTCs (tCTCneg, 56.9% ), low (tCTClo, 23.7%), intermediate (tCTCmid, 14.5%), or high (tCTChi, 4.9%). Patients with tCTClo, tCTCmid and tCTChi patterns had statistically significant inferior PFS and OS compared to those with tCTCneg (P<.001). AIC indicated that the tCTC model best predicted PFS and OS when compared to bCTC and cCTC models. Validation studies in an independent cohort of 1,856 MBC patients confirmed these findings. Further validation using only a single pretreatment CTC measurement confirmed prognostic performance of the tCTC model. Conclusions: We identified four novel prognostic groups in MBC based on similarities in CTC trajectory patterns during chemotherapy. Prognostic groups included patients with very poor outcome (tCTCmid+tCTChi, 19.4%) who could benefit from more effective treatment. Our novel prognostic classification approach may be utilized for fine-tuning of CTC-based risk-stratification strategies to guide future prospective clinical trials in MBC

    Serial Analysis of Circulating Tumor Cells in Metastatic Breast Cancer Receiving First-Line Chemotherapy

    Get PDF
    32siBackground: We examined the prognostic significance of circulating tumor cell (CTC) dynamics during treatment in metastatic breast cancer (MBC) patients receiving first-line chemotherapy. Methods: Serial CTC data from 469 patients (2202 samples) were used to build a novel latent mixture model to identify groups with similar CTC trajectory (tCTC) patterns during the course of treatment. Cox regression was used to estimate hazard ratios for progression-free survival (PFS) and overall survival (OS) in groups based on baseline CTCs, combined CTC status at baseline to the end of cycle 1, and tCTC. Akaike information criterion was used to select the model that best predicted PFS and OS. Results: Latent mixture modeling revealed 4 distinct tCTC patterns: undetectable CTCs (56.9%), low (23.7%), intermediate (14.5%), or high (4.9%). Patients with low, intermediate, and high tCTC patterns had statistically significant inferior PFS and OS compared with those with undetectable CTCs (P <. 001). Akaike Information Criterion indicated that the tCTC model best predicted PFS and OS compared with baseline CTCs and combined CTC status at baseline to the end of cycle 1 models. Validation studies in an independent cohort of 1856 MBC patients confirmed these findings. Further validation using only a single pretreatment CTC measurement confirmed prognostic performance of the tCTC model. Conclusions: We identified 4 novel prognostic groups in MBC based on similarities in tCTC patterns during chemotherapy. Prognostic groups included patients with very poor outcome (intermediate + high CTCs, 19.4%) who could benefit from more effective treatment. Our novel prognostic classification approach may be used for fine-tuning of CTC-based risk stratification strategies to guide future prospective clinical trials in MBC.reservedmixedMagbanua M.J.M.; Hendrix L.H.; Hyslop T.; Barry W.T.; Winer E.P.; Hudis C.; Toppmeyer D.; Carey L.A.; Partridge A.H.; Pierga J.-Y.; Fehm T.; Vidal-Martinez J.; Mavroudis D.; Garcia-Saenz J.A.; Stebbing J.; Gazzaniga P.; Manso L.; Zamarchi R.; Antelo M.L.; Mattos-Arruda L.D.; Generali D.; Caldas C.; Munzone E.; Dirix L.; Delson A.L.; Burstein H.J.; Qadir M.; Ma C.; Scott J.H.; Bidard F.-C.; Park J.W.; Rugo H.S.Magbanua, M. J. M.; Hendrix, L. H.; Hyslop, T.; Barry, W. T.; Winer, E. P.; Hudis, C.; Toppmeyer, D.; Carey, L. A.; Partridge, A. H.; Pierga, J. -Y.; Fehm, T.; Vidal-Martinez, J.; Mavroudis, D.; Garcia-Saenz, J. A.; Stebbing, J.; Gazzaniga, P.; Manso, L.; Zamarchi, R.; Antelo, M. L.; Mattos-Arruda, L. D.; Generali, D.; Caldas, C.; Munzone, E.; Dirix, L.; Delson, A. L.; Burstein, H. J.; Qadir, M.; Ma, C.; Scott, J. H.; Bidard, F. -C.; Park, J. W.; Rugo, H. S

    Antarctic crabs: invasion or endurance?

    Get PDF
    Recent scientific interest following the “discovery” of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This “invasion hypothesis” suggests that decapod crabs were driven out of Antarctica 40–15 million years ago and are only now returning as “warm” enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60°S. All are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day “crab invasion”. We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the “invasion hypothesis”
    corecore