202 research outputs found

    Modulated rat dendritic cells in renal transplantation models : immune regulation and graft outcome

    Get PDF
    Following allograft transplantation, the immune system is triggered to induce an immunogenic response against the non-self organ. To prevent the induction of this immunogenic response, recipients are treated with immunosuppressive medication. The majority of these medications target T cells, which play a key role in the rejection process, and thereby prevent acute rejection in most of the recipients. Non-specific targeting of these T cells not only prevents acute rejection, it also prevents responses against pathogens or tumor growth. In addition, long-term use of immunosuppressive agents may cause organ failure due to toxic effects on the organ [1]. Therefore, the ultimate goal is to develop a therapy, which targets alloreactive T cells, allowing a normal response against pathogens and tumors, in the absence of chronic use of immunosuppressive agents. Various strategies have been employed to induce such a donor-specific tolerance, amongst which treatment with immature DC [2]. These immature DC have, in contrast to mature DC, the capacity to induce tolerogenic responses and are therefore an attractive candidate for cellular therapy. The studies presented in this thesis demonstrate that in fully mismatched kidney transplantation models, administration of modulated donor-derived DC to recipient__s results in regulation of recipient__s immune response. Both the donor-specific hyporesponsiveness of recipient T cells and the reduced influx of CD8+ T cells into the graft of LPS-DexDC treated recipients indicate a positive effect of this treatment. However, optimization of this treatment is necessary, since no prolonged allograft survival was induced. Several mechanisms, which are not regulated by LPS-DexDC, may be responsible for the observed rejection, amongst which the preformed alloantibodies, increased levels of C3 in the graft and the increased influx of NK cells. Additional studies are required to explore the modulating effects of antibodies which block co-stimulation and/or short courses of immunosuppressive drugs as a co-treatment in these settings.This work was supported by the EU grants QLRT-2001-01215 LSHB-CT-2004-512090 (RISET)UBL - phd migration 201

    A Parsimonious Test of Constancy of a Positive Definite Correlation Matrix in a Multivariate Time-Varying GARCH Model

    Get PDF
    We construct a parsimonious test of constancy of the correlation matrix in the multivariate conditional correlation GARCH model, where the GARCH equations are time-varying. The alternative to constancy is that the correlations change deterministically as a function of time. The alternative is a covariance matrix, not a correlation matrix, so the test may be viewed as a general test of stability of a constant correlation matrix. The size of the test in finite samples is studied by simulation. An empirical example involving daily returns of 26 stocks included in the Dow Jones stock index is given.Peer Reviewe

    Testing in clinical practice: a qualitative study combining interaction analysis of testing situations and therapists' reflections on testing the person with aphasia

    Get PDF
    How is aphasia assessment carried out in practice? how are standardized test procedures transformed into situated interactions between a speech-language therapist and a person with aphasia? What are the concerns of therapists when testing? Research has focused on the reliability and validity of standardized aphasia tests or on development of new model-based tests (Spreen and Risser, 2003), but less attention has been given to the implementation of testing procedures in face-to-face interaction with clients

    HIV-1 Disease Progression Is Associated with Bile-Salt Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    Background: DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4+ T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11. Furthermore, BSSL binds to HIV-1 co-receptor CXCR4. We hypothesized that BSSL modulates HIV-1 disease progression and emergence of CXCR4 using HIV-1 (X4) variants. Results: The relation between BSSL genotype and HIV-1 disease progression and emergence of X4 variants was studied using Kaplan Meier and multivariate Cox proportional hazard analysis in a cohort of HIV-1 infected men having sex with men (n = 334, with n = 130 seroconverters). We analyzed the association of BSSL genotype with set-point viral load and CD4 cell count, both pre-infection and post-infection at viral set-point. The number of repeats in BSSL exon 11 were highly variable ranging from 10 to 18 in seropositive individuals and from 5-17 in HRSN with 16 repeats being dominant (>80% carry at least one allele with 16 repeats). We defined 16 to 18 repeats as high (H) and less than 16 repeats as low (L) repeat numbers. Homozygosity for the high (H) repeat number BSSL genotype (HH) correlated with high CD4 cell numbers prior to infection (p = 0.007). In HIV-1 patients, delayed disease progression was linked to the HH BSSL genotype (RH = 0.462 CI = 0.282-0.757, p = 0.002) as was delayed emergence of X4 variants (RH = 0.525, 95% CI = 0.290-0.953, p = 0.034). The LH BSSL genotype, previously found to be associated with enhanced DC-SIGN binding of human milk, was identified to correlate with accelerated disease progression in our cohort of HIV-1 infected MSM (RH = 0.517, 95% CI = 0.328-0.818, p = 0.005). Conclusion: We identify BSSL as a marker for HIV-1 disease progression and emergence of X4 variants. Additionally, we identified a relation between BSSL genotype and CD4 cell counts prior to infectio

    A Minimum of Three Motifs Is Essential for Optimal Binding of Pseudomurein Cell Wall-Binding Domain of Methanothermobacter thermautotrophicus

    Get PDF
    We have biochemically and functionally characterized the pseudomurein cell wall-binding (PMB) domain that is present at the C-terminus of the Surface (S)-layer protein MTH719 from Methanothermobacter thermautotrophicus. Chemical denaturation of the protein with guanidinium hydrochloride occurred at 3.8 M. A PMB-GFP fusion protein not only binds to intact pseudomurein of methanogenic archaea, but also to spheroplasts of lysozyme-treated bacterial cells. This binding is pH dependent. At least two of the three motifs that are present in the domain are necessary for binding. Limited proteolysis revealed a possible cleavage site in the spacing sequence between motifs 1 and 2 of the PMB domain, indicating that the motif region itself is protected from proteases

    Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    OBJECTIVE: Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4(+) T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms. STUDY DESIGN: ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions. RESULTS: DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein. CONCLUSION: The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding

    Get Organised: The 'Do's' Preceding Successful Field Research

    Get PDF
    There is no shortage in the political science literature on field research regarding issues of research design, methodology, and data evaluation. Yet, the practical and organisational intricacies that precede successful fieldwork are frequently overlooked. This lack of methodical advice may be due to the impression that field research is highly contextual, and so case-specific that general guidelines, which apply to all field research endeavours alike, are inconceivable. While we acknowledge the organisational complexity of field research, we disagree with the notion that the preparatory dimension of fieldwork is by necessity unique for every undertaking. Rather, recommendations for common challenges that occur during the preparation and organisation phase of a field trip can be identified and formulated. Consequently, we present and discuss ten organisational ?do's? preceding successful field research. Current graduate students and future field researchers will regard these ten pointers as useful hints in the organisation of their own endeavour. While the list is by no means exhaustive, the ten recommendations will lower the organisational entry costs of aspiring field researchers, and enable them to hit the ground running when arriving in the field

    Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view

    Get PDF
    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively
    • …
    corecore