787 research outputs found

    The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.)

    Get PDF
    By simultaneously measuring carbon dioxide release, water loss and flight force in several species of fruit flies in the genus Drosophila, we have investigated respiration and respiratory transpiration during elevated locomotor activity. We presented tethered flying flies with moving visual stimuli in a virtual flight arena, which induced them to vary both flight force and energetic output. In response to the visual motion, the flies altered their energetic output as measured by changes in carbon dioxide release and concomitant changes in respiratory water loss. We examined the effect of absolute body size on respiration and transpiration by studying four different-sized species of fruit flies. In resting flies, body-mass-specific CO(2) release and water loss tend to decrease more rapidly with size than predicted according to simple allometric relationships. During flight, the mass-specific metabolic rate decreases with increasing body size with an allometric exponent of -0.22, which is slightly lower than the scaling exponents found in other flying insects. In contrast, the mass-specific rate of water loss appears to be proportionately greater in small animals than can be explained by a simple allometric model for spiracular transpiration. Because fractional water content does not change significantly with increasing body size, the smallest species face not only larger mass-specific energetic expenditures during flight but also a higher risk of desiccation than their larger relatives. Fruit flies lower their desiccation risk by replenishing up to 75 % of the lost bulk water by metabolic water production, which significantly lowers the risk of desiccation for animals flying under xeric environmental conditions

    Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)

    Full text link
    We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {\em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Strictosidine, the common precursor for monoterpenoid indole alkaloids with 3 α and 3 β configuration

    Get PDF
    Recently we reported that strictosidine (l> is the key intermediate in the formation of the three classes (ASDidOf3DeIm5, Iboga, Corynanthe) of monoterpenoid indole alkaloids In Catharanthus roseus and a variety of other plant species in cell culture using in vivo and in vitro techniques"2. These results were independently confirmed In Manchester 394 and subsequently also Scott et a1.5 were able to confirm the precursor role of (1) using Catharanthus material. All these results are in accord with reports on the biosynthesis of an alkaloid of taxonomically distant origin, camptothecln, for which strictosidine la&am6 was previously found to be a precursor, and recently7 also (1). The key intermediate in the biosynthesis of the majority of mono-terpenoid alkaloids is therefore (1) with 3 a (2) configuration, rather than vincoside (2) with 3 13 (lX> configuration as had previously been assumeda. However, a generalization of this precursor function of (1

    The temperature dependence of FeRh's transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T=TmT = T_m between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T≥0T \geq 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of TmT_m, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    Non-Newtonian Mechanics

    Get PDF
    The classical motion of spinning particles can be described without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincare' group; and only requiring the conservation of the linear and angular momenta we derive the zitterbewegung: namely the decomposition of the 4-velocity in the newtonian constant term p/m and in a non-newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating Special Relativity, provided that the energy-momentum moves along the worldline of the center-of-mass. Moreover, a non-linear, non-constant relation holds between the time durations measured in different reference frames. Newtonian Mechanics is re-obtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Introducing a Lagrangian containing also derivatives of the 4-velocity we get a new equation of the motion, actually a generalization of the Newton Law a=F/m. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin and analyze the general solution of the Eulero-Lagrange equation for Dirac particles. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page

    The onset of magnetic order in fcc-Fe films on Cu(100)

    Full text link
    On the basis of a first-principles electronic structure theory of finite temperature metallic magnetism in layered materials, we investigate the onset of magnetic order in thin (2-8 layers) fcc-Fe films on Cu(100) substrates. The nature of this ordering is altered when the systems are capped with copper. Indeed we find an oscillatory dependence of the Curie temperatures as a function of Cu-cap thickness, in excellent agreement with experimental data. The thermally induced spin-fluctuations are treated within a mean-field disordered local moment (DLM) picture and give rise to layer-dependent `local exchange splittings' in the electronic structure even in the paramagnetic phase. These features determine the magnetic intra- and interlayer interactions which are strongly influenced by the presence and extent of the Cu cap.Comment: 13 pages, 3 figure

    Theory of defect-induced crystal field perturbations in rare earth magnets

    Full text link
    We present a theory describing the single-ion anisotropy of rare earth (RE) magnets in the presence of point defects. Taking the RE-lean 1:12 magnet class as a prototype, we use first-principles calculations to show how the introduction of Ti substitutions into SmFe12_{12} perturbs the crystal field, generating new coefficients due to the lower symmetry of the RE environment. We then demonstrate that these perturbations can be described extremely efficiently using a screened point charge model. We provide analytical expressions for the anisotropy energy which can be straightforwardly implemented in atomistic spin dynamics simulations, meaning that such simulations can be carried out for an arbitrary arrangement of point defects. The significant crystal field perturbations calculated here demonstrate that a sample which is single-phase from a structural point of view can nonetheless have a dramatically varying anisotropy profile at the atomistic level if there is compositional disorder, which may influence localized magnetic objects like domain walls or skyrmions.Comment: 14 pages, 3 figure
    • …
    corecore