881 research outputs found

    Performance constraints and compensation for teleoperation with delay

    Get PDF
    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs

    The GDPR and the research exemption: considerations on the necessary safeguards for research biobanks

    Get PDF
    The General Data Protection Regulation (GDPR) came into force in May 2018. The aspiration of providing for a high level of protection to individuals’ personal data risked placing considerable constraints on scientific research, that was contrary to various research traditions across the EU. Therefore, along with the set of carefully outlined data subjects’ rights, the GDPR provides for a two-level framework to enable derogations from these rights when scientific research is concerned. First, by directly invoking provisions of the GDPR on a condition that safeguards that must include ‘technical and organisational measures’ are in place and second, through the Member State law. Although these derogations are allowed in the name of scientific research, they can simultaneously be challenging in light of the ethical requirements and well-established standards in biobanking that have been set forth in various research-related soft legal tools, international treaties and other legal instruments. In this paper we review such soft legal tools, international treaties and other legal instruments that regulate the use of health research data. We report on the results of this review, and analyse the rights contained within the GDPR and Article 89 of the GDPR vis-à-vis these instruments. These instruments were also reviewed to provide guidance on possible safeguards that should be followed when implementing any derogations. To conclude, we will offer some commentary on limits of the derogations under the GDPR and appropriate safeguards to ensure compliance with standard ethical requirements

    Appropriate safeguards and Article 89 of the GDPR: considerations for biobank, databank and genetic research

    Get PDF
    The collection and use of biological samples and data for genetic research, or for storage in a biobank or databank for future research, impacts upon many fundamental rights, including the right to dignity, the right to private and family life, the right to protection of personal data, the right to freedom of arts and sciences, and the right to non-discrimination. The use of genetic data and other health-related data in this context must be used in a manner that is rooted in human rights. Owing in part to the General Data Protection Regulation (GDPR) coming into force, the right to the protection of personal data in the context of scientific research has been afforded increasing attention. The GDPR gives effect to the right to data protection, but states that this right must be balanced against other rights and interests. The GDPR applies to all personal data, with specific attention to special categories of data, that includes health and genetic data. The collection, access to, and sharing of such data must comply with the GDPR, and therefore directly impacts the use of such data in research. The GDPR does provide for several derogations and exemptions for research from many of the strict processing requirements. Such derogations are permitted only if there are appropriate safeguards in place. Article 89 states that to be appropriate, safeguards must be “in accordance” with the GDPR “for the rights and freedoms of the data subject”. In particular, those safeguards must ensure “respect for the principle of data minimisation”. Despite the importance of safeguards, the GDPR is silent as to the specific measures that may be adopted to meet these requirements. This paper considers Article 89 and explores safeguards that may be deemed appropriate in the context of biobanks, databanks, and genetic research

    Return of research results (RoRR) to the healthy CHRIS cohort: designing a policy with the participants

    Get PDF
    Legal, financial and organizational challenges and the absence of coherent international guidelines and legal frameworks still discourage many genetic studies to share individual research results with their participants. Studies and institutions deciding to return genetic results will need to design their own study-specific return policy after due consideration of the ethical responsibilities. The Cooperative Health Research in South Tyrol (CHRIS) study, a healthy cohort study, did not foresee the return of individual genomic results during its baseline phase. However, as it was expected that the follow-up phase would generate an increasing amount of reliable genetic results, an update of the return of research results (RoRR) policy became necessary. To inform this revision, an empirical study using mixed methods was developed to investigate the views of CHRIS research participants (20), local general practitioners (3) and the local genetic counselling service (1). During the interviews, three different examples of potential genetic results with a very diverse potential impact on participants were presented: breast cancer, Parkinson disease and Huntington disease. The CHRIS participants also completed a short questionnaire, collecting personal information and asking for a self-evaluation of their knowledge about genetics. This study made it clear that research participants want to make autonomous decisions on the disclosure or non-disclosure of their results. While the motivations for participants' decisions were very diverse, we were able to identify several common criteria that had a strong influence on their choices. Providing information on these factors is crucial to enable participants to make truly informed decisions. [Abstract copyright: © 2021. The Author(s).

    Non-Newtonian Mechanics

    Get PDF
    The classical motion of spinning particles can be described without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincare' group; and only requiring the conservation of the linear and angular momenta we derive the zitterbewegung: namely the decomposition of the 4-velocity in the newtonian constant term p/m and in a non-newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating Special Relativity, provided that the energy-momentum moves along the worldline of the center-of-mass. Moreover, a non-linear, non-constant relation holds between the time durations measured in different reference frames. Newtonian Mechanics is re-obtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Introducing a Lagrangian containing also derivatives of the 4-velocity we get a new equation of the motion, actually a generalization of the Newton Law a=F/m. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin and analyze the general solution of the Eulero-Lagrange equation for Dirac particles. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page

    The onset of magnetic order in fcc-Fe films on Cu(100)

    Full text link
    On the basis of a first-principles electronic structure theory of finite temperature metallic magnetism in layered materials, we investigate the onset of magnetic order in thin (2-8 layers) fcc-Fe films on Cu(100) substrates. The nature of this ordering is altered when the systems are capped with copper. Indeed we find an oscillatory dependence of the Curie temperatures as a function of Cu-cap thickness, in excellent agreement with experimental data. The thermally induced spin-fluctuations are treated within a mean-field disordered local moment (DLM) picture and give rise to layer-dependent `local exchange splittings' in the electronic structure even in the paramagnetic phase. These features determine the magnetic intra- and interlayer interactions which are strongly influenced by the presence and extent of the Cu cap.Comment: 13 pages, 3 figure

    Simulation of a finishing operation : milling of a turbine blade and influence of damping

    Get PDF
    Milling is used to create very complex geometries and thin parts, such as turbine blades. Irreversible geometric defects may appear during finishing operations when a high surface quality is expected. Relative vibrations between the tool and the workpiece must be as small as possible, while tool/workpiece interactions can be highly non-linear. A general virtual machining approach is presented and illustrated. It takes into account the relative motion and vibrations of the tool and the workpiece. Both deformations of the tool and the workpiece are taken into account. This allows predictive simulations in the time domain. As an example the effect of damping on the behavior during machining of one of the 56 blades of a turbine disk is analysed in order to illustrate the approach potential
    • 

    corecore