89 research outputs found

    Skeletal muscle transcriptomics identifies common pathways in nerve crush injury and ageing

    Get PDF
    Motor unit remodelling involving repeated denervation and re-innervation occurs throughout life. The efficiency of this process declines with age contributing to neuromuscular deficits. This study investigated differentially expressed genes (DEG) in muscle following peroneal nerve crush to model motor unit remodelling in C57BL/6 J mice. Muscle RNA was isolated at 3 days post-crush, RNA libraries were generated using poly-A selection, sequenced and analysed using gene ontology and pathway tools. Three hundred thirty-four DEG were found in quiescent muscle from (26mnth) old compared with (4-6mnth) adult mice and these same DEG were present in muscle from adult mice following nerve crush. Peroneal crush induced 7133 DEG in muscles of adult and 699 DEG in muscles from old mice, although only one DEG (ZCCHC17) was found when directly comparing nerve-crushed muscles from old and adult mice. This analysis revealed key differences in muscle responses which may underlie the diminished ability of old mice to repair following nerve injury. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13395-021-00283-4

    Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.</p> <p>Methods</p> <p>Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.</p> <p>Results</p> <p>Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.</p> <p>Conclusion</p> <p>The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.</p

    Validity of instruments to assess students' travel and pedestrian safety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Safe Routes to School (SRTS) programs are designed to make walking and bicycling to school safe and accessible for children. Despite their growing popularity, few validated measures exist for assessing important outcomes such as type of student transport or pedestrian safety behaviors. This research validated the SRTS school travel survey and a pedestrian safety behavior checklist.</p> <p>Methods</p> <p>Fourth grade students completed a brief written survey on how they got to school that day with set responses. Test-retest reliability was obtained 3-4 hours apart. Convergent validity of the SRTS travel survey was assessed by comparison to parents' report. For the measure of pedestrian safety behavior, 10 research assistants observed 29 students at a school intersection for completion of 8 selected pedestrian safety behaviors. Reliability was determined in two ways: correlations between the research assistants' ratings to that of the Principal Investigator (PI) and intraclass correlations (ICC) across research assistant ratings.</p> <p>Results</p> <p>The SRTS travel survey had high test-retest reliability (κ = 0.97, n = 96, p < 0.001) and convergent validity (κ = 0.87, n = 81, p < 0.001). The pedestrian safety behavior checklist had moderate reliability across research assistants' ratings (ICC = 0.48) and moderate correlation with the PI (r = 0.55, p =< 0.01). When two raters simultaneously used the instrument, the ICC increased to 0.65. Overall percent agreement (91%), sensitivity (85%) and specificity (83%) were acceptable.</p> <p>Conclusions</p> <p>These validated instruments can be used to assess SRTS programs. The pedestrian safety behavior checklist may benefit from further formative work.</p

    Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multi-detector computed tomography angiography (MDCTA)of the coronary arteries after stenting has been evaluated in multiple studies.</p> <p>The purpose of this study was to perform a structured review and meta-analysis of the diagnostic performance of MDCTA for the detection of in-stent restenosis in the coronary arteries.</p> <p>Methods</p> <p>A Pubmed and manual search of the literature on in-stent restenosis (ISR) detected on MDCTA compared with conventional coronary angiography (CA) was performed. Bivariate summary receiver operating curve (SROC) analysis, with calculation of summary estimates was done on a stent and patient basis. In addition, the influence of study characteristics on diagnostic performance and number of non-assessable segments (NAP) was investigated with logistic meta-regression.</p> <p>Results</p> <p>Fourteen studies were included. On a stent basis, Pooled sensitivity and specificity were 0.82(0.72–0.89) and 0.91 (0.83–0.96). Pooled negative likelihood ratio and positive likelihood ratio were 0.20 (0.13–0.32) and 9.34 (4.68–18.62) respectively. The exclusion of non-assessable stents and the strut thickness of the stents had an influence on the diagnostic performance. The proportion of non-assessable stents was influenced by the number of detectors, stent diameter, strut thickness and the use of an edge-enhancing kernel.</p> <p>Conclusion</p> <p>The sensitivity of MDTCA for the detection of in-stent stenosis is insufficient to use this test to select patients for further invasive testing as with this strategy around 20% of the patients with in-stent stenosis would be missed. Further improvement of scanner technology is needed before it can be recommended as a triage instrument in practice. In addition, the number of non-assessable stents is also high.</p

    Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation

    Get PDF
    Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations

    Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner

    Get PDF
    Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf) of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low) flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators

    Gene selection for cancer classification with the help of bees

    Full text link

    A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis

    Get PDF
    Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules

    Considering Soil Potassium Pools with Dissimilar Plant Availability

    Get PDF
    Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics
    corecore