182 research outputs found

    Femtosecond dynamics snapshots of the early ion track evolution

    Get PDF
    The energy dissipation and femtosecond dynamics due to fast heavy ions in matter is critically reviewed with emphasis on possible mechanisms that lead to materials modi cations. Starting from a discussion of the initial electronic energy deposition processes, three basic mechanisms for the conversion of electronic into atomic energy are investigated by means of Auger electron spectroscopy. Results for amorphous Si, amorphous C and polypropylene are presented and discussed. Experimental evidence for a highly charged track region as well as for hot electrons inside tracks is shown. As follows mainly from Auger electron spectroscopy, there are strong indications for di erent track production mechanisms in di erent material

    Search for short time phase effects in the electronic damage evolution A case study with silicon

    Get PDF
    This work focusses on the production and decay properties of inner shell vacancies and valence band excitations induced by swift highly charged ions interacting with amorphous and crystalline Si. High resolution electron spectra have been taken for fast heavy ions at 1.78 5 MeV u as well as for electrons of similar velocity incident on atomically clean Si targets of well defined phase. Various Augerelectron structures are analyzed concerning their width, their intensity and exact peak position. All measured peaks show a small shift towards lower energy when the charge of the projectile is increased. This finding is an indication for a nuclear track potential inside the ion track. A detailed analysis of the Auger electron spectra for amorphous Si and crystalline Si 111 7 x 7 points to a small but significant phase effect in the short time dynamics of ion track

    Ultrafast electronic processes in an insulator The Be and O sites in BeO

    Get PDF
    The short time dynamics of amorphous beryllium oxide a BeO has been investigated for electronic excitation ionization by fast incident electrons, as well as by Ar7 , Ar15 , Xe15 , and Xe31 ions at velocities of 6 10 the speed of light. Site specific Auger electron spectra induced by fast heavy ions are the central point of this investigation. Electron induced Auger spectra serve as a reference and electron energy loss EELS spectroscopy as well as resonant inelastic X ray scattering RIXS are invoked for quantitative understanding. For the heavy ion case, we observe strong variations in the corresponding spectral distributions of Be K and O K Auger lines. These are related to local changes of the electron density, of the electron temperature and even of the electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions

    Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease

    Get PDF
    The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype

    Effects of continuous milking during a field trial on productivity, milk protein yield and health in dairy cows

    Get PDF
    The objective of this field study with an automatic milking system was to evaluate the effects of omitting the dry period on health and productivity during the subsequent lactation in dairy cows. A total of 98 German Simmental cows of six Southern German farms were assigned randomly to two experimental groups: The first group was dried-off 56 days before calving (D for dried-off, n=49), and the second group was milked continuously during this period until calving (CM for continuous milking, n=49). From the latter a third group emerged, including cows that dried-off themselves spontaneously (DS for dried-off spontaneously, n=14). Blood serum values of glucose, β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA) and IGF-1 showed most pronounced fluctuations in D cows. Over the entire study period, the concentrations of BHBA and NEFA were markedly lower in the CM and DS groups. Furthermore, IGF-1 concentration was lowest for D cows and also decrease in back fat thickness was more pronounced. Mean concentration of milk protein was markedly higher in CM and DS cows (3.70% and 3.71%) compared with D cows (3.38%). Owing to the lower 305-day milk yield (−15.6%) and the lower total milk yield (−3.1%), the total amount of produced protein in the subsequent lactation was 2.5% (6.8 kg) lower, although the additional protein amount in CM cows from week −8 to calving was 35.7 kg. The greatest benefit resulted from positive effects on fertility and the lower incidence of diseases: CM cows had their first oestrus 1 week earlier compared with D cows, they also conceived earlier and showed a significantly lower risk of developing hypocalcaemia, ketosis and puerperal disorders. The present study showed that the costs of medical treatment and milk losses were twice as high in D cows, compared with CM and DS cows, and thus the reduced costs because of the more stable health outweighed the financial losses of milk yield by +18.49 € per cow and lactation

    Impairment of Adolescent Hippocampal Plasticity in a Mouse Model for Alzheimer's Disease Precedes Disease Phenotype

    Get PDF
    The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms

    Neuronal MicroRNA Deregulation in Response to Alzheimer's Disease Amyloid-β

    Get PDF
    Normal brain development and function depends on microRNA (miRNA) networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimer's disease (AD), brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-β (Aβ) itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA) on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Aβ peptides. Time-course assays of neuronal Aβ treatments show that Aβ is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Aβ42-depositing APP23 mice, at the onset of Aβ plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Aβ may be an important factor contributing to the cascade of events leading to AD
    • …
    corecore