1,268 research outputs found
Phase diagram of the three-dimensional Hubbard model at half filling
We investigate the phase diagram of the three-dimensional Hubbard model at
half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic
Neel temperature T_N is determined from the specific heat maximum in
combination with finite-size scaling of the magnetic structure factor. Our
results interpolate smoothly between the asymptotic solutions for weak and
strong coupling, respectively, in contrast to previous QMC simulations. The
location of the metal-insulator transition in the paramagnetic phase above T_N
is determined using the electronic compressibility as criterion.Comment: 6 pages, 6 figures, to be published in Eur. Phys. J. B (2000
Saturation of Cs2 Photoassociation in an Optical Dipole Trap
We present studies of strong coupling in single-photon photoassociation of
cesium dimers using an optical dipole trap. A thermodynamic model of the trap
depletion dynamics is employed to extract absolute rate coefficents. From the
dependence of the rate coefficient on the photoassociation laser intensity, we
observe saturation of the photoassociation scattering probability at the
unitarity limit in quantitative agreement with the theoretical model by Bohn
and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power
broadening of the resonance width is measured. We could not observe an
intensity dependent light shift in contrast to findings for lithium and
rubidium, which is attributed to the absence of a p or d-wave shape resonance
in cesium
Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles
High-visibility interference of photon echoes generated in spatially
separated solid-state atomic ensembles is demonstrated. The solid state
ensembles were LiNbO waveguides doped with Erbium ions absorbing at 1.53
m. Bright coherent states of light in several temporal modes (up to 3) are
stored and retrieved from the optical memories using two-pulse photon echoes.
The stored and retrieved optical pulses, when combined at a beam splitter, show
almost perfect interference, which demonstrates both phase preserving storage
and indistinguishability of photon echoes from separate optical memories. By
measuring interference fringes for different storage times, we also show
explicitly that the visibility is not limited by atomic decoherence. These
results are relevant for novel quantum repeaters architectures with photon echo
based multimode quantum memories
Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles
We report an interference experiment of spontaneous emission of light from
two distant solid-state ensembles of atoms that are coherently excited by a
short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals
with channel waveguides, which are placed in the two arms of a Mach-Zehnder
interferometer. The light that is spontaneously emitted after the excitation
pulse shows first-order interference. By a strong collective enhancement of the
emission, the atoms behave as ideal two-level quantum systems and no which-path
information is left in the atomic ensembles after emission of a photon. This
results in a high fringe visibility of 95%, which implies that the observed
spontaneous emission is highly coherent
Results of a search for 2-decay of Xe with high-pressure copper proportional counters in Baksan Neutrino Observatory
The experiment for the 2-decay of Xe search with two
high-pressure copper proportional counters has been held in Baksan neutrino
observatory. The search for the process is based on comparison of spectra
measured with natural and enriched xenon. No evidence has been found for
2(2)- and 2(0)-decay. The decay half lifetime limit
based on data measured during 8000 h is Tyr for
2-mode and Tyr for 0-mode (90%C.L.).Comment: 9 pages, 8 figures; talk at the NANP'05 Conference; submitted to
Phys. At. Nuc
The Hilbert basis method for D-flat directions and the superpotential
We discuss, using the Hilbert basis method, how to efficiently construct a
complete basis for D-flat directions in supersymmetric Abelian and non-Abelian
gauge theories. We extend the method to discrete (R and non-R) symmetries. This
facilitates the construction of a basis of all superpotential terms in a theory
with given symmetries.Comment: 11 pages; a related mathematica code can be found at
http://einrichtungen.ph.tum.de/T30e/codes/NonAbelianHilbert
Origin of atomic clusters during ion sputtering
Previous studies have shown that the size distributions of small clusters ( n<=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n>=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface
- …