31 research outputs found

    gbpA as a Novel qPCR Target for the Species-Specific Detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in Environmental, Stool, and Historical Continuous Plankton Recorder Samples

    Get PDF
    The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V . cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V . cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V . cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V . cholerae and failed to amplify strains of the closely-related species Vibrio mimicus . The sensitivity of the assay applied to environmental and stool samples spiked with V . cholerae ATCC 39315 was comparable to that of pure cultures and was of 10 2 genomic units/l for drinking and seawater samples, 10 1 genomic units/g for sediment and 10 2 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V . cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V . cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies

    Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts

    Get PDF
    Pathological erythropoiesis with consequent anemia is a leading cause of symptomatic morbidity in internal medicine. The etiologies of anemia are complex and include reactive as well as neoplastic conditions. Clonal expansion of erythroid cells in the bone marrow may result in peripheral erythrocytosis and polycythemia but can also result in anemia when clonal cells are dysplastic and have a maturation arrest that leads to apoptosis and hinders migration, a constellation typically seen in the myelodysplastic syndromes. Rarely, clonal expansion of immature erythroid blasts results in a clinical picture resembling erythroid leukemia. Although several mechanisms underlying normal and abnormal erythropoiesis and the pathogenesis of related disorders have been deciphered in recent years, little is known about specific markers and targets through which prognosis and therapy could be improved in anemic or polycythemic patients. In order to discuss new markers, targets and novel therapeutic approaches in erythroid disorders and the related pathologies, a workshop was organized in Vienna in April 2017. The outcomes of this workshop are summarized in this review, which includes a discussion of new diagnostic and prognostic markers, the updated WHO classification, and an overview of new drugs used to stimulate or to interfere with erythropoiesis in various neoplastic and reactive conditions. The use and usefulness of established and novel erythropoiesis-stimulating agents for various indications, including myelodysplastic syndromes and other neoplasms, are also discussed

    Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic inactivation of tumor suppressor genes (TSG) by promoter CpG island hypermethylation is a hallmark of cancer. To assay its extent in human lymphoma, methylation of 24 TSG was analyzed in lymphoma-derived cell lines as well as in patient samples.</p> <p>Methods</p> <p>We screened for TSG methylation using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in 40 lymphoma-derived cell lines representing anaplastic large cell lymphoma, Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Hodgkin lymphoma and mantle cell lymphoma (MCL) as well as in 50 primary lymphoma samples. The methylation status of differentially methylated <it>CD44 </it>was verified by methylation-specific PCR and bisulfite sequencing. Gene expression of <it>CD44 </it>and its reactivation by DNA demethylation was determined by quantitative real-time PCR and on the protein level by flow cytometry. Induction of apoptosis by anti-CD44 antibody was analyzed by annexin-V/PI staining and flow cytometry.</p> <p>Results</p> <p>On average 8 ± 2.8 of 24 TSG were methylated per lymphoma cell line and 2.4 ± 2 of 24 TSG in primary lymphomas, whereas 0/24 TSG were methylated in tonsils and blood mononuclear cells from healthy donors. Notably, we identified that <it>CD44 </it>was hypermethylated and transcriptionally silenced in all BL and most FL and DLBCL cell lines, but was usually unmethylated and expressed in MCL cell lines. Concordant results were obtained from primary lymphoma material: <it>CD44 </it>was not methylated in MCL patients (0/11) whereas <it>CD44 </it>was frequently hypermethylated in BL patients (18/29). In cell lines with <it>CD44 </it>hypermethylation, expression was re-inducible at mRNA and protein levels by treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine, confirming epigenetic regulation of <it>CD44</it>. CD44 ligation assays with a monoclonal anti-CD44 antibody showed that CD44 can mediate apoptosis in CD44<sup>+ </sup>lymphoma cells. <it>CD44 </it>hypermethylated, CD44<sup>- </sup>lymphoma cell lines were consistently resistant towards anti-CD44 induced apoptosis.</p> <p>Conclusion</p> <p>Our data show that <it>CD44 </it>is epigenetically regulated in lymphoma and undergoes <it>de novo </it>methylation in distinct lymphoma subtypes like BL. Thus <it>CD44 </it>may be a promising new epigenetic marker for diagnosis and a potential therapeutic target for the treatment of specific lymphoma subtypes.</p

    Adapting care for older cancer patients during the COVID-19 pandemic: Recommendations from the International Society of Geriatric Oncology (SIOG) COVID-19 Working Group

    Get PDF
    The COVID-19 pandemic poses a barrier to equal and evidence-based management of cancer in older adults. The International Society of Geriatric Oncology (SIOG) formed a panel of experts to develop consensus recommendations on the implications of the pandemic on several aspects of cancer care in this age group including geriatric assessment (GA), surgery, radiotherapy, systemic treatment, palliative care and research. Age and cancer diagnosis are significant predictors of adverse outcomes of the COVID-19 infection. In this setting, GA is particularly valuable to drive decision-making. GA may aid estimating physiologic reserve and adaptive capability, assessing risk-benefits of either providing or temporarily withholding treatments, and determining patient preferences to help inform treatment decisions. In a resource-constrained setting, geriatric screening tools may be administered remotely to identify patients requiring comprehensive GA. Tele-health is also crucial to ensure adequate continuity of care and minimize the risk of infection exposure. In general, therapeutic decisions should favor the most effective and least invasive approach with the lowest risk of adverse outcomes. In selected cases, this might require deferring or omitting surgery, radiotherapy or systemic treatments especially where benefits are marginal and alternative safe therapeutic options are available. Ongoing research is necessary to expand knowledge of the management of cancer in older adults. However, the pandemic presents a significant barrier and efforts should be made to ensure equitable access to clinical trials and prospective data collection to elucidate the outcomes of COVID-19 in this population

    Performance of the qPCR assay for detection of <i>V</i>. <i>cholerae</i> in artificially degraded DNA samples.

    No full text
    <p>(A) Electropherogram plot obtained by Agilent Bioanalyzer analysis of artificially fragmented genomic DNA of <i>V</i>. <i>cholerae</i> ATCC 39315. (B) Plot of mean Cq-values from three replicates tested against the <i>V</i>. <i>cholerae</i> artificially fragmented DNA inputs. Error bars indicate the standard deviations of the means.</p

    <i>V</i>. <i>cholerae</i> detection in CPR samples from endemic Cholera regions (South West Africa).

    No full text
    <p>Relative abundance of <i>Vibrio</i> spp. and <i>Vibrio cholerae</i> in CPR samples collected in cholera endemic areas of the Benguela Current Large Marine Ecosystem region (BCLME, South West Africa) as a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies (see main text for details).</p

    Amplification parameters for the qPCR assay applied to artificial formalin-fixed samples.

    No full text
    <p>The values of Efficiency, Slope and Intercept are expressed as mean ± standard deviation calculated from two spiking experiments with <i>V</i>. <i>cholerae</i> ATCC 39315 cells, each quantified in triplicate on the same run (n = 6)</p><p>Amplification parameters for the qPCR assay applied to artificial formalin-fixed samples.</p

    Sensitivity of the qPCR assay for detection of <i>V</i>. <i>cholerae</i> O1 El Tor N16961.

    No full text
    <p>DNA was amplified with the gbpA TaqMan primers in the presence of the gbpA fluorogenic probe. (A) Amplification plot of <i>V</i>. <i>cholerae</i> ATCC 39315 sample dilutions containing 10<sup>6</sup>, 10<sup>5</sup>, 10<sup>4</sup>, 10<sup>3</sup>, 10<sup>2</sup>, 10<sup>1</sup> genome copies per reaction (GU/rx). (B) Plot of mean Cq-values from three replicates tested against the <i>V</i>. <i>cholerae</i> DNA inputs. Error bars indicate the standard deviations of the means.</p
    corecore