426 research outputs found

    Luminosity-dependent spectral and timing properties of the accreting pulsar GX 304-1 measured with INTEGRAL

    Full text link
    Context: Be/X-ray binaries show outbursts with peak luminosities up to a few times 1037 10^{37}\,erg/s, during which they can be observed and studied in detail. Most (if not all) Be/X-ray binaries harbour accreting pulsars, whose X-ray spectra in many cases contain cyclotron resonant scattering features related to the magnetic field of the sources. Spectral variations as a function of luminosity and of the rotational phase of the neutron star are observed in many accreting pulsars. Aims: We explore X-ray spectral and timing properties of the Be/X-ray binary GX 304-1 during an outburst episode. Specifically, we investigate the behavior of the cyclotron resonant scattering feature, the continuum spectral parameters, the pulse period, and the energy- and luminosity-resolved pulse profiles. We combine the luminosity-resolved spectral and timing analysis to probe the accretion geometry and the beaming patterns of the rotating neutron star. Methods: We analyze the INTEGRAL data from the two JEM-X modules, ISGRI and SPI, covering the January-February 2012 outburst, divided in six observations. We obtain pulse profiles in two energy bands, phase-averaged and phase-resolved spectra for each observation. Results: We confirm the positive luminosity-dependence of the cyclotron line energy in GX 304-1, and report a dependence of the photon index on luminosity. Using a pulse-phase connection technique, we find a pulse period solution valid for the entire outburst. Our pulse-phase resolved analysis shows, that the centroid energy of the cyclotron line is varying only slightly with pulse phase, while other spectral parameters show more pronounced variations. Our results are consistent with a scenario in which, as the pulsar rotates, we are exploring only a small portion of its beam pattern.Comment: 12 pages, 12 figures, Accepted for publication in A&

    Two ~35 day clocks in Her X-1: evidence for neutron star free precession

    Full text link
    We present evidence for the existence of two ~35 day clocks in the Her X-1/HZ Her binary system. ~35 day modulations are observed 1) in the Turn-On cycles with two on- and two off-states, and 2) in the changing shape of the pulse profiles which re-appears regularly. The two ways of counting the 35 day cycles are generally in synchronization. This synchronization did apparently break down temporarily during the long Anomalous Low (AL3) which Her X-1 experienced in 1999/2000, in the sense that there must have been one extra Turn-On cycle. Our working hypothesis is that there are two clocks in the system, both with a period of about ~35 days: precession of the accretion disk (the less stable "Turn-On clock") and free precession of the neutron star (the more stable "Pulse profile clock"). We suggest that free precession of the neutron star is the master clock, and that the precession of the accretion disk is basically synchronized to that of the neutron star through a feed-back mechanism in the binary system. However, the Turn-On clock can slip against its master when the accretion disk has a very low inclination, as is observed to be the case during AL3. We take the apparent correlation between the histories of the Turn-Ons, of the Anomalous Lows and of the pulse period evolution, with a 5 yr quasi-periodicity, as evidence for strong physical interaction and feed-back between the major components in the system. We speculate that the 5 yr (10 yr) period is either due to a corresponding activity cycle of HZ Her or a natural ringing period of the physical system of coupled components. The question whether free precession really exists in neutron stars is of great importance for the understanding of matter with supra-nuclear density.Comment: 6 pages, 5 figures, accepted for publication by A&

    Updating the orbital ephemeris of Her X-1; rate of decay and eccentricity of the orbit

    Full text link
    We present an update of the orbital ephemeris of the binary X-ray pulsar Her X-1 and determine an improved value for the rate of orbital decay. In addition, we report the first measurement of the orbital eccentricity. We have analyzed pulse timing data of Her X-1 from X-ray observations by RXTE (Rossi X-Ray Timing Explorer) and INTEGRAL over the period 1996-2007. Accurate pulse arrival times were determined from solar system bary-centered photon arrival times by generating pulse profiles averaged over appropriately short integration times. Applying pulse phase connection techniques, it was possible to determine sufficiently accurate local ephemeris data for seven observation periods distributed over 12 years. Combining the new local T90 values with historical values from the literature we update the orbital ephemeris of Her X-1 to T90 = MJD 46359.871940(6) and Porb = 1.700167590(2) d and measure a continuous change of the orbital period of dPorb/dt = -(4.85 +/- 0.13) x 10-11 s/s. For the first time, a value for the eccentricity of the orbit of Her X-1 is measured to be e = (4.2 +/- 0.8) x 10-4.Comment: 7 pages, 4 figures, accepted by A&A on 30.03.200

    Continuous monitoring of pulse period variations in Her X-1 using Swift/BAT

    Full text link
    Context: Monitoring of pulse period variations in accreting binary pulsars is an important tool to study the interaction between the magnetosphere of the neutron star and the accretion disk. While the X-ray flux of the brightest X-ray pulsars have been successfully monitored over many years (e.g. with RXTE/ASM, CGRO/BATSE, Swift/BAT), the possibility to monitor their pulse timing properties continuously has so far been very limited. Aims: In our work we show that the Swift/BAT observations can be used to monitor coherent pulsations of bright X-ray sources and use the Swift archival data to study one of the most enigmatic X-ray pulsars, Hercules X-1. A quasi-continuous monitoring of the pulse period and the pulse period derivative of an X-ray pulsar, here Her X-1, is achieved over a long time (<~ 4 yrs). We compare our observational results with predictions of accretion theory and use them to test different aspects of the physical model of the system. Methods: In our analysis we use the data accumulated with Swift/BAT starting from the beginning of 2005 (shortly after launch) until the present time. To search for pulsations and for their subsequent analysis we used the count rate measured by the BAT detector in the entire field of view. Results: The slope of the correlation between the locally determined spin-up rate and the X-ray luminosity is measured for Her X-1 and found to be in agreement with predictions of basic accretion torque theory. The observed behaviour of the pulse period together with the previously measured secular decrease of the system's orbital period is discussed in the frame of a model assuming ejection of matter close to the inner boundary of the accretion disk.Comment: 7 pages, 5 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore