295 research outputs found
Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution
In minimal supersymmetric models the -penguin usually provides
sub-dominant contributions to charged lepton flavour violating observables. In
this study, we consider the supersymmetric inverse seesaw in which the
non-minimal particle content allows for dominant contributions of the
-penguin to several lepton flavour violating observables. In particular, and
due to the low-scale (TeV) seesaw, the penguin contribution to, for instance,
\Br(\mu \to 3e) and conversion in nuclei, allows to render some of
these observables within future sensitivity reach. Moreover, we show that in
this framework, the -penguin exhibits the same non-decoupling behaviour
which had previously been identified in flavour violating Higgs decays in the
Minimal Supersymmetric Standard Model.Comment: 29 pages, 9 figures, 4 tables; v2: minor corrections, version to
appear in JHE
Using patient management as a surrogate for patient health outcomes in diagnostic test evaluation
<p>Abstract</p> <p>Background</p> <p>Before a new test is introduced in clinical practice, evidence is needed to demonstrate that its use will lead to improvements in patient health outcomes. Studies reporting test accuracy may not be sufficient, and clinical trials of tests that measure patient health outcomes are rarely feasible. Therefore, the consequences of testing on patient management are often investigated as an intermediate step in the pathway. There is a lack of guidance on the interpretation of this evidence, and patient management studies often neglect a discussion of the limitations of measuring patient management as a surrogate for health outcomes.</p> <p>Methods</p> <p>We discuss the rationale for measuring patient management, describe the common study designs and provide guidance about how this evidence should be reported.</p> <p>Results</p> <p>Interpretation of patient management studies relies on the condition that patient management is a valid surrogate for downstream patient benefits. This condition presupposes two critical assumptions: the test improves diagnostic accuracy; and the measured changes in patient management improve patient health outcomes. The validity of this evidence depends on the certainty around these critical assumptions and the ability of the study design to minimise bias. Three common designs are test RCTs that measure patient management as a primary endpoint, diagnostic before-after studies that compare planned patient management before and after testing, and accuracy studies that are extended to report on the actual treatment or further tests received following a positive and negative test result.</p> <p>Conclusions</p> <p>Patient management can be measured as a surrogate outcome for test evaluation if its limitations are recognised. The potential consequences of a positive and negative test result on patient management should be pre-specified and the potential patient benefits of these management changes clearly stated. Randomised comparisons will provide higher quality evidence about differences in patient management using the new test than observational studies. Regardless of the study design used, the critical assumption that patient management is a valid surrogate for downstream patient benefits or harms must be discussed in these studies.</p
Retrospective study of the implementation of the nursing process in a health area
OBJECTIVES: to analyze when the nursing process began to be used in the public and private healthcare centers of Gipuzkoa (Basque Country), and when both NANDA-I nursing diagnoses and the NIC-NOC terminologies were incorporated into this process. METHOD: a retrospective study was conducted, based on the analysis of nursing records that were used in the 158 studied centers. RESULTS: the specific data provided showed that in Gipuzkoa, the nursing process began to be used in the 1990s. As for NANDA-I nursing diagnoses, they have been used since 1996, and the NIC-NOC terminologies has been used since 2004. CONCLUSION: it was concluded that public centers are the ones which, generally speaking, first began with the nursing methodology, and that in comparison to the United States and Canada, the nursing process started to be used about 20 years later, NANDA-I nursing diagnoses around 15 years later, and the NIC-NOC terminologies, around six years later
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Protease Activity Increases in Plasma, Peritoneal Fluid, and Vital Organs after Hemorrhagic Shock in Rats
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable – possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock
An Analysis on the Detection of Biological Contaminants Aboard Aircraft
The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft
- …