280 research outputs found

    Application of a Gaussian multilayer diffusion model to characterize dispersion of vertical HCl column density in rocket exhaust clouds

    Get PDF
    Solid rocket exhaust cloud dispersion cases, based on seven meteorological regimes for overland advection in the Cape Canaveral, Florida, area, are examined for launch vehicle environmental impacts. They include a space shuttle case and all seven meteorological cases for the Titan 3, which exhausts 60% less HC1. The C(HC1) decays are also compared with recent in cloud peak HC1 data from eight Titan 3 launches. It is stipulated that while good overall agreement provides validation of the model, its limitations are considerable and a dynamics model is needed to handle local convective situations

    A thin layer angiogenesis assay: a modified basement matrix assay for assessment of endothelial cell differentiation

    Get PDF
    BACKGROUND: Basement matrices such as Matrigel™ and Geltrex™ are used in a variety of cell culture assays of anchorage-dependent differentiation including endothelial cell tube formation assays. The volumes of matrix recommended for these assays (approximately 150 μl/cm(2)) are costly, limit working distances for microscopy, and require cell detachment for subsequent molecular analysis. Here we describe the development and validation of a thin-layer angiogenesis (TLA) assay for assessing the angiogenic potential of endothelial cells that overcomes these limitations. RESULTS: Geltrex™ basement matrix at 5 μl/cm(2) in 24-well (10 μl) or 96-well (2 μl) plates supports endothelial cell differentiation into tube-like structures in a comparable manner to the standard larger volumes of matrix. Since working distances are reduced, high-resolution single cell microscopy, including DIC and confocal imaging, can be used readily. Using MitoTracker dye we now demonstrate, for the first time, live mitochondrial dynamics and visualise the 3-dimensional network of mitochondria present in differentiated endothelial cells. Using a standard commercial total RNA extraction kit (Qiagen) we also show direct RNA extraction and RT-qPCR from differentiated endothelial cells without the need to initially detach cells from their supporting matrix. CONCLUSIONS: We present here a new thin-layer assay (TLA) for measuring the anchorage-dependent differentiation of endothelial cells into tube-like structures which retains all the characteristics of the traditional approach but with the added benefit of a greatly lowered cost and better compatibility with other techniques, including RT-qPCR and high-resolution microscopy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-014-0041-5) contains supplementary material, which is available to authorized users

    Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)(3)-cored dendrimer

    Get PDF
    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)(3)]-cored dendrimer and in its blend with a 4,4(')-bis(N-carbazolyl)biphenyl host for the temperature range of 77-300 K. The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300 K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7 meV, which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials

    Triplet exciton diffusion and phosphorescence quenching in Iridium(III)-Centered dendrimers

    Get PDF
    A study of triplet-triplet exciton annihilation and nonradiative decay in films of iridium(III)-centered phosphorescent dendrimers is reported. The average separation of the chromophore was tuned by the molecular structure and also by blending with a host material. It was found that triplet exciton hopping is controlled by electron exchange interactions and can be over 600 times faster than phosphorescence quenching. Nonradiative decay occurs by weak dipole-dipole interactions and is independent of exciton diffusion, except in very thin films

    Mobilizing Crop Biodiversity

    Get PDF
    Over the past 70 years, the world has witnessed extraordinary growth in crop productivity, 1 enabled by a suite of technological advances, including higher yielding crop varieties, improved farm management, synthetic agrochemicals, and agricultural mechanization. While this “Green Revolution” intensified crop production, and is credited with reducing famine and malnutrition, its benefits were accompanied by several undesirable collateral effects (Pingali, 2012). These include a narrowing of agricultural biodiversity, stemming from increased monoculture and greater reliance on a smaller number of crops and crop varieties for the majority of our calories. This reduction in diversity has created vulnerabilities to pest and disease epidemics, climate variation, and ultimately to human health (Harlan, 1972). The value of crop diversity has long been recognized (Vavilov, 1992). A global system of genebanks (e.g.www.genebanks.org/genebanks/) was established in the 1970s to preserve the abundant genetic variation found in traditional “landrace” varieties of crops and in crop wild relatives (Harlan, 1972). While preserving crop variation is a critical first step, the time has come to make use of this variation to breed more resilient crops. The DivSeek International Network (https://divseekintl.org/) is a scientific, not-for profit organization that aims to accelerate such effort
    • …
    corecore