9 research outputs found

    A prospective, active haemovigilance study with combined cohort analysis of 19 175 transfusions of platelet components prepared with amotosalen-UVA photochemical treatment

    Get PDF
    Background and Objectives: A photochemical treatment process (PCT) utilizing amotosalen and UVA light (INTERCEPT™ Blood System) has been developed for inactivation of viruses, bacteria, parasites and leucocytes that can contaminate blood components intended for transfusion. The objective of this study was to further characterize the safety profile of INTERCEPT-treated platelet components (PCT-PLT) administered across a broad patient population. Materials and Methods: This open-label, observational haemovigilance programme of PCT-PLT transfusions was conducted in 21 centres in 11 countries. All transfusions were monitored for adverse events within 24 h post-transfusion and for serious adverse events (SAEs) up to 7 days post-transfusion. All adverse events were assessed for severity (Grade 0–4), and causal relationship to PCT-PLT transfusion. Results: Over the course of 7 years in the study centres, 4067 patients received 19 175 PCT-PLT transfusions. Adverse events were infrequent, and most were of Grade 1 severity. On a per-transfusion basis, 123 (0·6%) were classified an acute transfusion reaction (ATR) defined as an adverse event related to the transfusion. Among these ATRs, the most common were chills (77, 0·4%) and urticaria (41, 0·2%). Fourteen SAEs were reported, of which 2 were attributed to platelet transfusion (<0·1%). No case of transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, transfusion-transmitted infection or death was attributed to the transfusion of PCT-PLT. Conclusion: This longitudinal haemovigilance safety programme to monitor PCT-PLT transfusions demonstrated a low rate of ATRs, and a safety profile consistent with that previously reported for conventional platelet components.publishedVersio

    Magnetic Enrichment of SARS-CoV-2 Antigen-Binding B Cells for Analysis of Transcriptome and Antibody Repertoire

    No full text
    The ongoing COVID-19 pandemic has had devastating health impacts across the globe. The development of effective diagnostics and therapeutics will depend on the understanding of immune responses to natural infection and vaccination to the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While both B-cell immunity and T-cell immunity are generated in SARS-CoV-2-infected and vaccinated individuals, B-cell-secreted antibodies are known to neutralize SARS-CoV-2 virus and protect from the disease. Although interest in characterizing SARS-CoV-2-reactive B cells is great, the low frequency of antigen-binding B cells in human blood limits in-depth cellular profiling. To overcome this obstacle, we developed a magnetic bead-based approach to enrich SARS-CoV-2-reactive B cells prior to transcriptional and antibody repertoire analysis by single-cell RNA sequencing (scRNA-seq). Here, we describe isolation of SARS-CoV-2 antigen-binding B cells from two seropositive donors and comparison to nonspecific B cells from a seronegative donor. We demonstrate that SARS-CoV-2 antigen-binding B cells can be distinguished on the basis of transcriptional profile and antibody repertoire. Furthermore, SARS-CoV-2 antigen-binding B cells exhibit a gene expression pattern indicative of antigen experience and memory status. Combining scRNA-seq methods with magnetic enrichment enables the rapid characterization of SARS-CoV-2 antigen-binding B cells

    Novel Characterization Techniques for Multifunctional Plasmonic–Magnetic Nanoparticles in Biomedical Applications

    No full text
    In the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and offer promising avenues for applications in multimodal bioimaging, hyperthermal therapies, and magnetically driven selective delivery. This paper focuses on the implementation of advanced characterization methods, comparing statistical analyses of individual multifunctional particle properties with macroscopic properties as a way of fine-tuning synthetic methodologies for their fabrication methods. Special emphasis is placed on the size-dependent properties, biocompatibility, and challenges that can arise from this versatile nanometric system. In order to ensure the quality and applicability of these particles, various novel methods for characterizing the magnetic gold particles, including the analysis of their morphology, optical response, and magnetic response, are also discussed, with the overall goal of optimizing the fabrication of this complex system and thus enhancing its potential as a preferred diagnostic agent

    A prospective, active haemovigilance study with combined cohort analysis of 19 175 transfusions of platelet components prepared with amotosalen-UVA photochemical treatment

    Get PDF
    Background and Objectives: A photochemical treatment process (PCT) utilizing amotosalen and UVA light (INTERCEPT™ Blood System) has been developed for inactivation of viruses, bacteria, parasites and leucocytes that can contaminate blood components intended for transfusion. The objective of this study was to further characterize the safety profile of INTERCEPT-treated platelet components (PCT-PLT) administered across a broad patient population. Materials and Methods: This open-label, observational haemovigilance programme of PCT-PLT transfusions was conducted in 21 centres in 11 countries. All transfusions were monitored for adverse events within 24 h post-transfusion and for serious adverse events (SAEs) up to 7 days post-transfusion. All adverse events were assessed for severity (Grade 0–4), and causal relationship to PCT-PLT transfusion. Results: Over the course of 7 years in the study centres, 4067 patients received 19 175 PCT-PLT transfusions. Adverse events were infrequent, and most were of Grade 1 severity. On a per-transfusion basis, 123 (0·6%) were classified an acute transfusion reaction (ATR) defined as an adverse event related to the transfusion. Among these ATRs, the most common were chills (77, 0·4%) and urticaria (41, 0·2%). Fourteen SAEs were reported, of which 2 were attributed to platelet transfusion (<0·1%). No case of transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, transfusion-transmitted infection or death was attributed to the transfusion of PCT-PLT. Conclusion: This longitudinal haemovigilance safety programme to monitor PCT-PLT transfusions demonstrated a low rate of ATRs, and a safety profile consistent with that previously reported for conventional platelet components
    corecore