112 research outputs found

    Riociguat: Mode of action and clinical development in pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are progressive and debilitating diseases characterized by gradual obstruction of the pulmonary vasculature, leading to elevated pulmonary artery pressure and increased pulmonary vascular resistance. If untreated, they can result in death due to right heart failure. Riociguat is a novel soluble guanylate cyclase (sGC) stimulator that is approved for the treatment of PAH and CTEPH. Here we describe in detail the role of the nitric oxide-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway in the pathogenesis of PAH and CTEPH, and the mode of action of riociguat. We also review the preclinical data associated with the development of riociguat, along with the efficacy and safety data of riociguat from initial clinical trials and the pivotal Phase III randomized clinical trials in PAH and CTEPH

    Fluorescence Dequenching Makes Haem-Free Soluble Guanylate Cyclase Detectable in Living Cells

    Get PDF
    In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e.g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions

    Translating the oxidative stress hypothesis into the clinic: NOX versus NOS

    Get PDF
    Cardiovascular diseases remain the leading cause of death in industrialised nations. Since the pathomechanisms of most cardiovascular diseases are not understood, the majority of therapeutic approaches are symptom-orientated. Knowing the molecular mechanism of disease would enable more targeted therapies. One postulated underlying mechanism of cardiovascular diseases is oxidative stress, i.e. the increased occurrence of reactive oxygen species such as superoxide. Oxidative stress leads to a dysfunction of vascular endothelium-dependent protective mechanisms. There is growing evidence that this scenario also involves impaired nitric oxide (NO)-cyclic GMP signalling. Out of a number of enzyme families that can produce reactive oxygen species, NADPH oxidases stand out, as they are the only enzymes whose sole purpose is to produce reactive oxygen species. This review focuses on the clinically validated targets of oxidative stress, NO synthase (NOS) and the NO receptor, soluble guanylate cyclase as well as the source of ROS, e.g. NADPH oxidases. We place recent knowledge in the function and regulation of these enzyme families into clinical perspective. For a comprehensive overview of the biology and pharmacology of oxidative stress and possible other sources and targets, we refer to other literature overviews

    Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload

    Get PDF
    Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy

    Individualized and Clinically Derived Stimuli Activate Limbic Structures in Depression: An fMRI Study

    Get PDF
    In the search for neurobiological correlates of depression, a major finding is hyperactivity in limbic-paralimbic regions. However, results so far have been inconsistent, and the stimuli used are often unspecific to depression. This study explored hemodynamic responses of the brain in patients with depression while processing individualized and clinically derived stimuli.Eighteen unmedicated patients with recurrent major depressive disorder and 17 never-depressed control subjects took part in standardized clinical interviews from which individualized formulations of core interpersonal dysfunction were derived. In the patient group such formulations reflected core themes relating to the onset and maintenance of depression. In controls, formulations reflected a major source of distress. This material was thereafter presented to subjects during functional magnetic resonance imaging (fMRI) assessment.Increased hemodynamic responses in the anterior cingulate cortex, medial frontal gyrus, fusiform gyrus and occipital lobe were observed in both patients and controls when viewing individualized stimuli. Relative to control subjects, patients with depression showed increased hemodynamic responses in limbic-paralimbic and subcortical regions (e.g. amygdala and basal ganglia) but no signal decrease in prefrontal regions.This study provides the first evidence that individualized stimuli derived from standardized clinical interviewing can lead to hemodynamic responses in regions associated with self-referential and emotional processing in both groups and limbic-paralimbic and subcortical structures in individuals with depression. Although the regions with increased responses in patients have been previously reported, this study enhances the ecological value of fMRI findings by applying stimuli that are of personal relevance to each individual's depression

    Endothelin-1-induced constriction in the coronary resistance vessels and abdominal aorta of the guinea pig

    Full text link
    The purpose of this study was to examine contractile properties of endothelin-1, a newly discovered vasoactive peptide, in guinea pig coronary resistance vessels and abdominal aorta. Changes in perfusion pressure after injections of endothelin-1 were measured using a constant-flow modified Langendorff preparation. The ED 10 values of coronary perfusion pressure were about 100-fold less for endothelin-1 than for prostaglandin F 2α . After the endothelium was damaged by exposure to free radicals, maximal coronary constriction in response to endothelin-1 (10 −9 moles) was not altered, whereas dilator responses to low doses of endothelin-1 were converted to constrictor responses. Removal of the endothelium from aortic rings significantly increased responsiveness to endothelin-1 and the maximal response to the peptide. In calcium-free medium, endothelin-1 induced small increases both in perfusion pressure in coronary vessles and in tension in the aorta. Reintroduction of calcium in the coronary and aortic preparations produced a rapid increase in perfusion pressure and tension, respectively. Further, endothelin-1-induced coronary constriction was inhibited 59%±7% by nifedipine (10 −7 moles). We conclude that endothelin-1 is a more potent constrictor than prostaglandin F 2α in the coronary vasculature. Endothelin-1-induced constriction in the coronary vasculature of the guinea pig is not mediated through an endogenous constricting factor released from the endothelium or a constrictor prostaglandin. Further, endothelin-1-induced dilation in the coronary vasculature and attenuation of endothelin-1-induced contraction in the abdominal aorta of the guinea pig are mediated through the release of a factor from the endothelium. Endothelin-1-induced coronary constriction and abdominal aortic contraction require extracellular calcium, entering, in part, through nifedipine-sensitive channels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41586/1/380_2005_Article_BF02058691.pd

    cGMP becomes a drug target

    Get PDF
    Cyclic guanosine 3′,5′-monophosphate (cGMP) serves as a second messenger molecule, which regulates pleiotropic cellular functions in health and disease. cGMP is generated by particulate or soluble guanylyl cyclases upon stimulation with natriuretic peptides or nitric oxide, respectively. Furthermore, the cGMP concentration is modulated by cGMP-degrading phosphodiesterases. Several targets of cGMP are utilized to effect its various cellular functions. These effector molecules comprise cGMP-dependent protein kinases, ion channels, and phosphodiesterases. During the last decade, it emerged that cGMP is a novel drug target for the treatment of pulmonary and cardiovascular disorders. In this respect, several drugs were developed, which are now in clinical phase studies for, e.g., pulmonary hypertension or cardiovascular diseases. These new drugs act NO-independently with/without heme on soluble guanylyl cyclases or induce subtypes of particular guanylyl cyclases and thereby lead to new therapeutic concepts and horizons. In this regard, the fifth cGMP meeting held in June 2011 in Halle, Germany, comprised the new therapeutic challenges with the novel functional and structural concepts of cGMP generating and effector molecules. This report summarizes the new data on molecular mechanisms, (patho)physiological relevance, and therapeutic potentials of the cGMP signaling system that were presented at this meeting
    corecore