23 research outputs found

    On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic

    Get PDF
    Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.Peer reviewe

    Auditory abilities of speakers who persisted, or recovered, from stuttering

    Get PDF
    AbstractObjectiveThe purpose of this study was to see whether participants who persist in their stutter have poorer sensitivity in a backward masking task compared to those participants who recover from their stutter.DesignThe auditory sensitivity of 30 children who stutter was tested on absolute threshold, simultaneous masking, backward masking with a broadband and with a notched noise masker. The participants had been seen and diagnosed as stuttering at least 1 year before their 12th birthday. The participants were assessed again at age 12 plus to establish whether their stutter had persisted or recovered. Persistence or recovery was based on participant's, parent's and researcher's assessment and Riley's [Riley, G. D. (1994). Stuttering severity instrument for children and adults (3rd ed.). Austin, TX: Pro-Ed.] Stuttering Severity Instrument-3. Based on this assessment, 12 speakers had persisted and 18 had recovered from stuttering.ResultsThresholds differed significantly between persistent and recovered groups for the broadband backward-masked stimulus (thresholds being higher for the persistent group).ConclusionsBackward masking performance at teenage is one factor that distinguishes speakers who persist in their stutter from those who recover.Education objectives: Readers of this article should: (1) explain why auditory factors have been implicated in stuttering; (2) summarise the work that has examined whether peripheral, and/or central, hearing are problems in stuttering; (3) explain how the hearing ability of persistent and recovered stutterers may differ; (4) discuss how hearing disorders have been implicated in other language disorders
    corecore