164 research outputs found

    Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Get PDF
    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic glos

    Particle Emission and Exposure during Nanoparticle Synthesis in Research Laboratories

    Get PDF
    Real-time size, mass and number particle concentrations, and emission rates in university laboratories producing nanoparticles by scalable flame spray pyrolysis are quantified. Measurements were conducted in four laboratories using various technological set-ups and during production of particles of a range of compositions with differing physical-chemical properties, from NaCl salt, BiPO4, CaSO4, Bi2O3, insoluble TiO2, SiO2, and WO3 to composites such as Cu/ZnO, Cu/SiO2, Cu/ZrO2, Ta2O5/SiO2, and Pt/Ba/Al2O3. Production time ranged from 0.25 to 400 min and yields from 0.33 to 183 g. Temporal and spatial analyses of the particle concentrations were performed indicating that elevated number concentrations in the workplace can occur. Airborne submicron number concentrations increased from background levels of 2100 up to 106 000 cm−3 during production, while the mass concentration ranged from a background of 0.009 to 0.463 mg m−3. Maximum particle number emission rates amounted to 1.17 × 1012 min−1. The size distributions displayed concentration peaks mainly between 110 and 180 nm. However, changes in the operating conditions and the production of certain nanoparticles resulted in concentration peaks in the nanoparticle size range <100 nm. The effectiveness and limitations of current technology in assessing researchers' exposure to nanoparticles during production are examined, and further measures for workers' protection are propose

    Physico-Chemical Differences Between Particle- and Molecule-Derived Toxicity: Can We Make Inherently Safe Nanoparticles?

    Get PDF
    The rapidly growing applications of nanotechnology require a detailed understanding of benefits and risks, particularly in toxicology. The present study reviews the physical and chemical differences between particles and molecules when interacting with living organisms. In contrast to classical chemicals, the mobility of nanoparticles is governed by agglomeration, a clustering process that changes the characteristic size of the nanomaterials during exposure, toxicity tests or in the environment. The current status of nanotoxicology highlights non-classical toxic interactions through catalytic processes inside living cells and the enhanced heavy metal transport into the cytosol through the 'Trojan horse mechanism'. The safety of nanoparticles in consumer goods is proposed to be rendered inherently safer by substituting the currently used persistent oxides through biodegradable materials

    Carbon coated magnetic nanoparticles as supports in microwave-assisted palladium catalyzed Suzuki-Miyaura couplings

    Get PDF
    A palladium bis-N-heterocyclic carbene complex was immobilized on polystyrene modified, magnetic carbon coated iron nanoparticles and evaluated in Suzuki-Miyaura cross-coupling reactions under conventional and microwave heating. Under the latter conditions, both aryl bromides and aryl chlorides could be employed as substrates at low loading of catalyst (0.2 mol%), which could be readily recovered by an external magnet and reused in at least four cycles. As a possible deactivation pathway of the catalyst, the formation of palladium nanoparticles in the course of the reaction that became encapsulated in the polystyrene matrix of the support is suggeste

    Device for continuous extracorporeal blood purification using target-specific metal nanomagnets

    Get PDF
    Background. The present work illustrates how magnetic separation-based blood purification using ultra-strong iron nanomagnets can be implemented into an extracorporeal blood purification circuit. By this promising technique, today's blood purification may be extended to specifically filter high-molecular compounds without being limited by filter cut-offs or column surface saturation. Methods. Blood spiked with digoxin (small molecule drug) and interleukin-1ÎČ (inflammatory protein) was circulated ex vivo through a device composed of approved blood transfusion lines. Target-specific nanomagnets were continuously injected and subsequently recovered with the aid of a magnetic separator before recirculating the blood. Results. Magnetic blood purification was successfully carried out under flow conditions: already in single-pass experiments, removal efficiencies reached values of 75 and 40% for digoxin and interleukin-1ÎČ, respectively. Circulating 0.5 L of digoxin-intoxicated blood in a closed loop, digoxin concentration was decreased from initially toxic to therapeutic concentrations within 30 min and purification extents of 90% were achieved after 1.5 h. Conclusions. Magnetic separation can be successfully implemented into an extracorporeal blood purification device. Simultaneous and specific filtering of high-molecular compounds may offer promising new therapeutic tools for the future treatment of complex diseases, such as sepsis and autoimmune disorder

    Immobilization on a Nanomagnetic Co/C Surface Using ROM Polymerization: Generation of a Hybrid Material as Support for a Recyclable Palladium Catalyst

    Get PDF
    A novel hybrid material is reported as support for a recyclable palladium catalyst via surface immobilization of a ligand onto Co-based magnetic nanoparticles (NPs). A standard “click” reaction is utilized to covalently attach a norbornene tag (Nb-tag) to the surface of the carbon coated cobalt NPs. The hybrid magnetic nanoparticles are produced by initiating polymerization of a mixture containing both Nb-tagged ligand (Nb-tagged PPh 3) and Nb-tagged carbon coated cobalt NPs. In turn, the norbornene units are suitably functionalized to serve as ligands for metal catalysts. A composite material is thus obtained which furnishes a loading that is one order of magnitude higher than the value obtained previously for the synthesis of functionalized Co/C-nanopowders. This allows for its application as a hybrid support with high local catalyst concentrations, as demonstrated for the immobilization of a highly active and recyclable palladium complex for Suzuki-Miyaura cross-coupling reactions. Due to the explicit magnetic moment of the cobalt- NPs, the overall magnetization of this organic/inorganic framework is significantly higher than of polymer coated iron oxide nanoparticles with comparable metal content, hence, its rapid separation from the reaction mixture and recycling via an external magnetic field is not hampered by the functionalized polymer shell

    Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro

    Full text link
    Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 ”g/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 ”g/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 ”g/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 ”g/mL aCaP compared to 5 ”g/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs

    Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids

    Full text link
    Over the last decades, the use of magnetic nanoparticles in research and commercial applications has increased dramatically. However, direct detection of trace quantities remains a challenge in terms of equipment cost, operating conditions and data acquisition times, especially in flowing conditions within complex media. Here we present the in-line, non-destructive detection of magnetic nanoparticles using high performance atomic magnetometers at ambient conditions in flowing media. We achieve sub-picomolar sensitivities measuring ∌\sim30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for biomedical and industrial applications, under flowing conditions in water and whole blood. Additionally, we demonstrate real-time surveillance of the magnetic separation of nanoparticles from water and whole blood. Overall our system has the merit of inline direct measurement of trace quantities of ferromagnetic nanoparticles with so far unreached sensitivities and could be applied in the biomedical field (diagnostics and therapeutics) but also in the industrial sector

    Modification of silicone elastomers with Bioglass 45S5Âź increases in ovo tissue biointegration

    Full text link
    Silicone is an important material family used for various medical implants. It is biocompatible, but its bioinertness prevents cell attachment, and thus tissue biointegration of silicone implants. This often results in constrictive fibrosis and implant failure. Bioglass 45S5Ÿ (BG) could be a suitable material to alter the properties of silicone, render it bioactive and improve tissue integration. Therefore, BG micro- or nanoparticles were blended into medical-grade silicone and 2D as well as 3D structures of the resulting composites were analyzed in ovo by a chick chorioallantoic membrane (CAM) assay. The biomechanical properties of the composites were measured and the bioactivity of the composites was verified in simulated body fluid. The bioactivity of BG-containing composites was confirmed visually by the formation of hydroxyapatite through scanning electron microscopy as well as by infrared spectroscopy. BG stiffens as prepared non-porous composites by 13% and 36% for micro- and nanocomposites respectively. In particular, after implantation for 7 days, the Young's modulus had increased significantly from 1.20 ± 0.01 to 1.57 ± 0.03 MPa for microcomposites and 1.44 ± 0.03 to 1.69 ± 0.29 MPa to for nanocpmosites. Still, the materials remain highly elastic and are comparably soft. The incorporation of BG into silicone overcame the bioinertness of the pure polymer. Although the overall tissue integration was weak, it was significantly improved for BG-containing porous silicones (+72% for microcomposites) and even further enhanced for composites containing nanoparticles (+94%). These findings make BG a suitable material to improve silicone implant properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018

    Monomer-on-Monomer (MoM) Mitsunobu Reaction: Facile Purification Utilizing Surface-Initiated Sequestration

    Get PDF
    A monomer-on-monomer (MoM) Mitsunobu reaction utilizing norbornenyl-tagged (Nb-tagged) reagents is reported, whereby purification was rapidly achieved by employing ring-opening metathesis polymerization which is initiated by any of three methods utilizing Grubbs catalyst (i) free catalyst in solution, (ii) surface-initiated catalyst-armed silica or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles
    • 

    corecore