2,622 research outputs found

    Recent STAR results in high-energy polarized proton-proton collisions at RHIC

    Full text link
    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized p⃗+p⃗\vec{p}+\vec{p} collisions at s=200−500 \sqrt{s}=200-500\,GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the extraction of the polarized gluon distribution function based on measurements of gluon initiated processes, such as hadron and jet production. The STAR detector is well suited for the reconstruction of various final states involving jets, Ï€0\pi^{0}, π±\pi^{\pm}, e±^{\pm} and γ\gamma, which allows to measure several different processes. Recent results will be shown on the measurement of jet production and hadron production at s=200 \sqrt{s}=200\,GeV. The RHIC spin physics program has recently completed the first data taking period in 2009 of polarized p⃗+p⃗\vec{p}+\vec{p} collisions at s=500 \sqrt{s}=500\,GeV. This opens a new era in the study of the spin-flavor structure of the proton based on the production of W−(+)W^{-(+)} bosons. Recent STAR results on the first measurement of WW boson production in polarized p⃗+p⃗\vec{p}+\vec{p} collisions will be shown.Comment: 10 pages, 9 figures, Talk presented at the 26th Winter Workshop on Nuclear Dynamics, Ocho Rios, Jamaica, January 2-9, 2010 to be published in Journal of Physics: Conference Series (JPCS) The author may be contacted via: [email protected]

    Recent high pT measurements in STAR

    Full text link
    After five years of data taking, the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory provides precise measurements of particle production at high transverse momentum in p-p, d-Au, and Au-Au collisions at sqrt(s) = 200 GeV. We review recent results on the flavor dependence of high pT particle suppression and hadron particle spectra at sqrt(s) = 62.4 GeV. New results on two-particle angular correlations for identified trigger particles and for low momentum associated charged hadrons in p-p and Au-Au as well as near-side Δη\Delta\eta correlations will be presented and discussed.Comment: 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Calcutta. 8 pages, 10 figures, submitted to J. Phys. G: Nucl. Part. Phy

    Azimuth Quadrupole Systematics in Au-Au Collisions

    Full text link
    We have measured ptp_t-dependent two-particle number correlations on azimuth and pseudorapidity for eleven centralities of sNN=62\sqrt{s_{NN}} = 62 and 200~GeV Au-Au collisions at STAR. 2D fits to these angular correlations isolate the azimuth quadrupole amplitude, denoted 2v22{2D}(pt)2 v_2^2 \{ 2D \} ( p_t ), from localized same-side correlations. Event-plane v2(pt)v_2 ( p_t ) measurements within the STAR TPC acceptance can be expressed as a sum of the azimuth quadrupole and the quadrupole component of the same-side peak. v2{2D}(pt)v_2 \{ 2D \} ( p_t ) can be transformed to reveal quadrupole ptp_t spectra which are approximately described by a fixed transverse boost and universal L\'evy form nearly independent of centrality. A parametrization of v2{2D}(pt)v_2 \{ 2D \} ( p_t ) can be factored into centrality and ptp_t-dependent pieces with a simple ptp_t dependence above 0.75 GeV/c. Results from STAR are compared to published data and model predictions.Comment: Conference proceedings for Hot Quarks 201

    Heavy ion collisions: Correlations and Fluctuations in particle production

    Full text link
    Correlations and fluctuations (the latter are directly related to the 2-particle correlations) is one of the important directions in analysis of heavy ion collisions. At the current stage of RHIC exploration, when the details matter, basically any physics question is addressed with help of correlation techniques. In this talk I start with a general introduction to the correlation and fluctuation formalism and discuss weak and strong sides of different type of observables. In more detail, I discuss the two-particle ptp_t correlations/\mpt fluctuations. In spite of not observing any dramatic changes in the event-by-event fluctuations with energy, which would indicate a possible phase transition, such correlations measurements remain an interesting and important subject, bringing valuable information. Lastly, I show how radial flow can generate characteristic azimuthal, transverse momentum and rapidity correlations, which could qualitatively explain many of recently observed phenomena in nuclear collisions.Comment: 8 pages, 8 figures. Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8-12, 2005, Salt Lake City, Kolkata, Indi

    Particle dependence of elliptic flow in Au+Au collisions at sNN=\sqrt{s_{NN}}= 200 GeV

    Full text link
    The elliptic flow parameter (v2v_2) for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} has been measured at mid-rapidity in Au + Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV by the STAR collaboration. The v2v_2 values for both KS0K_S^{0} and Λ+Λˉ\Lambda+\bar{\Lambda} saturate at moderate pTp_T, deviating from the hydrodynamic behavior observed in the lower pTp_T region. The saturated v2v_2 values and the pTp_T scales where the deviation begins are particle dependent. The particle-type dependence of v2v_2 shows features expected from the hadronization of a partonic ellipsoid by coalescence of co-moving quarks. These results will be discussed in relation to the nuclear modification factor (RCPR_{CP}) which has also been measured for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} by the STAR collaboration.Comment: 6 pages, 3 figures, Strange Quark Matter 2003 Conference (SQM 2003): updated with 2 figures from original talk that did not appear in the journa

    Measurement of D0 Azimuthal Anisotropy at Midrapidity in Au + Au Collisions at √ s N N = 200 GeV

    Get PDF
    We report the first measurement of the elliptic anisotropy (v2) of the charm meson D0 at midrapidity (|y

    Activities of the Remote Sensing Information Sciences Research Group

    Get PDF
    Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included

    Test of Chemical freeze-out at RHIC

    Full text link
    We present the results of a systematic test applying statistical thermal model fits in a consistent way for different particle ratios, and different system sizes using the various particle yields measured in the STAR experiment. Comparison between central and peripheral Au+Au and Cu+Cu collisions with data from p+p collisions provides an interesting tool to verify the dependence with the system size. We also present a study of the rapidity dependence of the thermal fit parameters using available data from RHIC in the forward rapidity regions and also using different parameterization for the rapidity distribution of different particles.Comment: SQM2008 conference proceeding

    Incident energy dependence of p\u3csub\u3et\u3c/sub\u3e correlations at relativistic energies

    Get PDF
    We present results for two-particle transverse momentum correlations, ⟨Δpt,iΔpt,j⟩, as a function of event centrality for Au+Au collisions at √sNN=20, 62, 130, and 200 GeV at the BNL Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy, and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements made at the CERN Super Proton Synchrotron

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie
    • …
    corecore