1,200 research outputs found

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1

    Are all fast radio bursts repeating sources?

    Full text link
    We present Monte-Carlo simulations of a cosmological population of repeating fast radio burst (FRB) sources whose comoving density follows the cosmic star formation rate history. We assume a power-law model for the intrinsic energy distribution for each repeating FRB source located at a randomly chosen position in the sky and simulate their dispersion measures (DMs) and propagation effects along the chosen lines-of-sight to various telescopes. In one scenario, an exponential distribution for the intrinsic wait times between pulses is chosen, and in a second scenario we model the observed pulse arrival times to follow a Weibull distribution. For both models we determine whether the FRB source would be deemed a repeater based on the telescope sensitivity and time spent on follow-up observations. We are unable to rule out the existence of a single FRB population based on comparisons of our simulations with the longest FRB follow-up observations performed. We however rule out the possibility of FRBs 171020 and 010724 repeating with the same rate statistics as FRB 121102 and also constrain the slope of a power-law fit to the FRB energy distribution to be 2.0<γ<1.0-2.0 < \gamma <-1.0. All-sky simulations of repeating FRB sources imply that the detection of singular events correspond to the bright tail-end of the adopted energy distribution due to the combination of the increase in volume probed with distance, and the position of the burst in the telescope beam.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    A deep search for pulsar wind nebulae using pulsar gating

    Get PDF
    Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906-49; here we report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and J1105-6107. Our radio observations of the field around PSR B1055-52 argue against previous claims of an extended X-ray and radio PWNe associated with the pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the radio flux indicate that less than 1e-6 of their spin-down energy is used to power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have relativistic winds similar to other young pulsars and the unseen PWN is resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2 cm^-3, respectively. Furthermore we constrain the spatial velocities of these pulsars to be less than ~450 km/s and thus rule out the association of PSR B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres

    The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    Full text link
    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa

    X-ray Observations of High-B Radio Pulsars

    Get PDF
    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 +/- 60 eV, with bolometric luminosity L_bb = 2.0(+2.2 -0.7)e+32 erg/s = 0.0036E_dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1 sigma upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect either pulsar, setting 3 sigma upper limits on their blackbody temperatures of 48 and 56 eV, respectively. Despite the similarities in rotational properties, these sources are significantly cooler than all but one of the XINSs, which we attribute to the two groups having been born with different magnetic fields and hence evolving differently.Comment: 18 pages, 2 tables, 5 figures, accepted for publication in the Astrophysical Journa
    corecore