2,856 research outputs found
Finding pulsars with LOFAR
We investigate the number and type of pulsars that will be discovered with
the low-frequency radio telescope LOFAR. We consider different search
strategies for the Galaxy, for globular clusters and for galaxies other than
our own. We show an all-sky Galactic survey can be optimally carried out by
incoherently combining the LOFAR stations. In a 60-day all-sky Galactic survey
LOFAR can find over a thousand pulsars, probing the local pulsar population to
a very deep luminosity limit. For targets of smaller angular size, globular
clusters and galaxies, the LOFAR stations can be combined coherently, making
use of the full sensitivity. Searches of nearby northern-sky globular clusters
can find large numbers of low luminosity millisecond pulsars (eg. over 10 new
millisecond pulsars in a 10-hour observation of M15). If the pulsar population
in nearby galaxies is similar to that of the Milky Way, a 10-hour observation
could find the 10 brightest pulsars in M33, or pulsars in other galaxies out to
a distance of 1.2Mpc.Comment: Proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars,
and More" (12-17 August 2007 at McGill, Montreal Canada
Finding pulsars with LOFAR
We investigate the number and type of pulsars that will be discovered with
the low-frequency radio telescope LOFAR. We consider different search
strategies for the Galaxy, for globular clusters and for other galaxies. We
show that a 25-day all-sky Galactic survey can find approximately 900 new
pulsars, probing the local pulsar population to a deep luminosity limit. For
targets of smaller angular size such as globular clusters and galaxies many
LOFAR stations can be combined coherently, to make use of the full sensitivity.
Searches of nearby northern-sky globular clusters can find new low luminosity
millisecond pulsars. Giant pulses from Crab-like extragalactic pulsars can be
detected out to over a Mpc.Comment: accepted for publication in A&A, 9 page
On the Apparent Nulls and Extreme Variability of PSR J1107-5907
We present an analysis of the emission behaviour of PSR J1107-5907, a source
known to exhibit separate modes of emission, using observations obtained over
approximately 10 yr. We find that the object exhibits two distinct modes of
emission; a strong mode with a broad profile and a weak mode with a narrow
profile. During the strong mode of emission, the pulsar typically radiates very
energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with
apparent nulls over time-scales of up to a few pulses at a time. Emission
during the weak mode is observed outside of these strong-mode sequences and
manifests as occasional bursts of up to a few clearly detectable pulses at a
time, as well as low-level underlying emission which is only detected through
profile integration. This implies that the previously described null mode may
in fact be representative of the bottom-end of the pulse intensity distribution
for the source. This is supported by the dramatic pulse-to-pulse intensity
modulation and rarity of exceptionally bright pulses observed during both modes
of emission. Coupled with the fact that the source could be interpreted as a
rotating radio transient (RRAT)-like object for the vast majority of the time,
if placed at a further distance, we advance that this object likely represents
a bridge between RRATs and extreme moding pulsars. Further to these emission
properties, we also show that the source is consistent with being a
near-aligned rotator and that it does not exhibit any measurable spin-down rate
variation. These results suggest that nulls observed in other intermittent
objects may in fact be representative of very weak emission without the need
for complete cessation. As such, we argue that longer (> 1 h) observations of
pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Resolving discrete pulsar spin-down states with current and future instrumentation
An understanding of pulsar timing noise offers the potential to improve the
timing precision of a large number of pulsars as well as facilitating our
understanding of pulsar magnetospheres. For some sources, timing noise is
attributable to a pulsar switching between two different spin-down rates
. Such transitions may be common but difficult to resolve using
current techniques. In this work, we use simulations of -variable
pulsars to investigate the likelihood of resolving individual
transitions. We inject step-changes in the value of with a wide
range of amplitudes and switching timescales. We then attempt to redetect these
transitions using standard pulsar timing techniques. The pulse arrival-time
precision and the observing cadence are varied. Limits on
detectability based on the effects such transitions have on the timing
residuals are derived. With the typical cadences and timing precision of
current timing programs, we find we are insensitive to a large region of
parameter space which encompasses small, short timescale
switches. We find, where the rotation and emission states are correlated, that
using changes to the pulse shape to estimate transition epochs, can
improve detectability in certain scenarios. The effects of cadence on detectability are discussed and we make comparisons with a known
population of intermittent and mode-switching pulsars. We conclude that for
short timescale, small switches, cadence should not be compromised when new
generations of ultra-sensitive radio telescopes are online.Comment: 19 pages, 11 figure
The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field
We have used deep V and R images acquired at the ESO Very Large Telescope to
identify the optical companion to the binary pulsar PSR J0610-2100, one of the
black-widow millisecond pulsars recently detected by the Fermi Gamma-ray
Telescope in the Galactic plane. We found a faint star (V~26.7) nearly
coincident (\delta r ~0".28) with the pulsar nominal position. This star is
visible only in half of the available images, while it disappears in the
deepest ones (those acquired under the best seeing conditions), thus indicating
that it is variable. Although our observations do not sample the entire orbital
period (P=0.28 d) of the pulsar, we found that the optical modulation of the
variable star nicely correlates with the pulsar orbital period and describes a
well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the
pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is
a heavily ablated very low mass star (~ 0.02Msun) that completely filled its
Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap
Gravitational Wave Hotspots: Ranking Potential Locations of Single-Source Gravitational Wave Emission
The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests
that gravitational waves (GWs) from supermassive black hole binary (SMBHB)
systems in the nearby universe will be de- tectable sometime during the next
decade. Currently, PTAs assume an equal probability of detection from every sky
position, but as evidence grows for a non-isotropic distribution of sources, is
there a most likely sky position for a detectable single source of GWs? In this
paper, a collection of galactic catalogs is used to calculate various metrics
related to the detectability of a single GW source resolv- able above a GW
background, assuming that every galaxy has the same probability of containing a
SMBHB. Our analyses of these data reveal small probabilities that one of these
sources is currently in the PTA band, but as sensitivity is improved regions of
consistent probability density are found in predictable locations, specifically
around local galaxy clusters.Comment: 9 pages, 9 figures, accepted for submission in Ap
A deep search for pulsar wind nebulae using pulsar gating
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields
around five promising pulsar candidates to search for radio pulsar wind nebulae
(PWNe). We have used the ATCA in its pulsar gating mode; this enables an image
to be formed containing only off-pulse visibilities, thereby dramatically
improving the sensitivity to any underlying PWN. Data from the Molonglo
Observatory Synthesis Telescope were also used to provide sensitivity on larger
spatial scales. This survey found a faint new PWN around PSR B0906-49; here we
report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and
J1105-6107. Our radio observations of the field around PSR B1055-52 argue
against previous claims of an extended X-ray and radio PWNe associated with the
pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the
radio flux indicate that less than 1e-6 of their spin-down energy is used to
power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have
relativistic winds similar to other young pulsars and the unseen PWN is
resolved and fainter than our surface brightness sensitivity threshold. We can
then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2
cm^-3, respectively. Furthermore we constrain the spatial velocities of these
pulsars to be less than ~450 km/s and thus rule out the association of PSR
B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed
to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres
Pulsar Science with the SKA
The SKA will be transformational for many areas of science, but in particular
for the study of neutron stars and their usage as tools for fundamental physics
in the form of radio pulsars. Since the last science case for the SKA, numerous
and unexpected advances have been made broadening the science goals even
further. With the design of SKA Phase 1 being finalised, it is time to confront
the new knowledge in this field, with the prospects promised by this exciting
new telescope. While technically challenging, we can build our expectations on
recent discoveries and technical developments that have reinforced our previous
science goals.Comment: 12 pages, 2 figures, to be published in: "Advancing Astrophysics with
the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)03
- …
