2,856 research outputs found

    Finding pulsars with LOFAR

    Full text link
    We investigate the number and type of pulsars that will be discovered with the low-frequency radio telescope LOFAR. We consider different search strategies for the Galaxy, for globular clusters and for galaxies other than our own. We show an all-sky Galactic survey can be optimally carried out by incoherently combining the LOFAR stations. In a 60-day all-sky Galactic survey LOFAR can find over a thousand pulsars, probing the local pulsar population to a very deep luminosity limit. For targets of smaller angular size, globular clusters and galaxies, the LOFAR stations can be combined coherently, making use of the full sensitivity. Searches of nearby northern-sky globular clusters can find large numbers of low luminosity millisecond pulsars (eg. over 10 new millisecond pulsars in a 10-hour observation of M15). If the pulsar population in nearby galaxies is similar to that of the Milky Way, a 10-hour observation could find the 10 brightest pulsars in M33, or pulsars in other galaxies out to a distance of 1.2Mpc.Comment: Proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More" (12-17 August 2007 at McGill, Montreal Canada

    Finding pulsars with LOFAR

    Full text link
    We investigate the number and type of pulsars that will be discovered with the low-frequency radio telescope LOFAR. We consider different search strategies for the Galaxy, for globular clusters and for other galaxies. We show that a 25-day all-sky Galactic survey can find approximately 900 new pulsars, probing the local pulsar population to a deep luminosity limit. For targets of smaller angular size such as globular clusters and galaxies many LOFAR stations can be combined coherently, to make use of the full sensitivity. Searches of nearby northern-sky globular clusters can find new low luminosity millisecond pulsars. Giant pulses from Crab-like extragalactic pulsars can be detected out to over a Mpc.Comment: accepted for publication in A&A, 9 page

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Resolving discrete pulsar spin-down states with current and future instrumentation

    Get PDF
    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (ν˙)(\dot{\nu}). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of ν˙\dot{\nu}-variable pulsars to investigate the likelihood of resolving individual ν˙\dot{\nu} transitions. We inject step-changes in the value of ν˙\dot{\nu} with a wide range of amplitudes and switching timescales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on ν˙\dot{\nu} detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programs, we find we are insensitive to a large region of Δν˙\Delta \dot{\nu} parameter space which encompasses small, short timescale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate ν˙\dot{\nu} transition epochs, can improve detectability in certain scenarios. The effects of cadence on Δν˙\Delta \dot{\nu} detectability are discussed and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short timescale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.Comment: 19 pages, 11 figure

    The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    Full text link
    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap

    Gravitational Wave Hotspots: Ranking Potential Locations of Single-Source Gravitational Wave Emission

    Get PDF
    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be de- tectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolv- able above a GW background, assuming that every galaxy has the same probability of containing a SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.Comment: 9 pages, 9 figures, accepted for submission in Ap

    A deep search for pulsar wind nebulae using pulsar gating

    Get PDF
    Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906-49; here we report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and J1105-6107. Our radio observations of the field around PSR B1055-52 argue against previous claims of an extended X-ray and radio PWNe associated with the pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the radio flux indicate that less than 1e-6 of their spin-down energy is used to power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have relativistic winds similar to other young pulsars and the unseen PWN is resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2 cm^-3, respectively. Furthermore we constrain the spatial velocities of these pulsars to be less than ~450 km/s and thus rule out the association of PSR B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres

    Pulsar Science with the SKA

    Full text link
    The SKA will be transformational for many areas of science, but in particular for the study of neutron stars and their usage as tools for fundamental physics in the form of radio pulsars. Since the last science case for the SKA, numerous and unexpected advances have been made broadening the science goals even further. With the design of SKA Phase 1 being finalised, it is time to confront the new knowledge in this field, with the prospects promised by this exciting new telescope. While technically challenging, we can build our expectations on recent discoveries and technical developments that have reinforced our previous science goals.Comment: 12 pages, 2 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)03
    corecore