67 research outputs found

    A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures

    Full text link
    Background Vertebroplasty has become a common treatment for painful osteoporotic vertebral fractures, but there is limited evidence to support its use. Methods We performed a multicenter, randomized, double-blind, placebo-controlled trial in which participants with one or two painful osteoporotic vertebral fractures that were of less than 12 months\u27 duration and unhealed, as confirmed by magnetic resonance imaging, were randomly assigned to undergo vertebroplasty or a sham procedure. Participants were stratified according to treatment center, sex, and duration of symptoms (&lt;6 weeks or 6 weeks). Outcomes were assessed at 1 week and at 1, 3, and 6 months. The primary outcome was overall pain (on a scale of 0 to 10, with 10 being the maximum imaginable pain) at 3 months. Results A total of 78 participants were enrolled, and 71 (35 of 38 in the vertebroplasty group and 36 of 40 in the placebo group) completed the 6-month follow-up (91%). Vertebroplasty did not result in a significant advantage in any measured outcome at any time point. There were significant reductions in overall pain in both study groups at each follow-up assessment. At 3 months, the mean (&plusmn;SD) reductions in the score for pain in the vertebroplasty and control groups were 2.6&plusmn;2.9 and 1.9&plusmn;3.3, respectively (adjusted between-group difference, 0.6; 95% confidence interval, &ndash;0.7 to 1.8). Similar improvements were seen in both groups with respect to pain at night and at rest, physical functioning, quality of life, and perceived improvement. Seven incident vertebral fractures (three in the vertebroplasty group and four in the placebo group) occurred during the 6-month follow-up period. Conclusions We found no beneficial effect of vertebroplasty as compared with a sham procedure in patients with painful osteoporotic vertebral fractures, at 1 week or at 1, 3, or 6 months after treatment. (Australian New Zealand Clinical Trials Registry number, ACTRN012605000079640.)<br /

    Efficacy and safety of vertebroplasty for treatment of painful osteoporotic vertebral fractures: a randomised controlled trial [ACTRN012605000079640]

    Get PDF
    Background. Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years. Design. A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months. Discussion. The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice. Trial registration. Australian Clinical Trial Register # [ACTRN012605000079640]. © 2008 Buchbinder et al; licensee BioMed Central Ltd.Rachelle Buchbinder, Richard H Osborne, Peter R Ebeling, John D Wark, Peter Mitchell, Chris J Wriedt, Lainie Wengier, David Connell, Stephen E Graves, Margaret P Staples and Bridie Murph

    Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes

    Get PDF
    Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1(Gt/Gt)). Surprisingly, Azi1(Gt/Gt) MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease

    Malignancy risk in Australian rheumatoid arthritis patients treated with anti-tumour necrosis factor therapy: an update from the Australian Rheumatology Association Database (ARAD) prospective cohort study

    No full text
    Abstract Background Tumour necrosis factor inhibitor (TNFi) therapy has been available for rheumatoid arthritis (RA) patients for several decades but data on the long-term risk of malignancy associated with its use is limited. Our aims were to assess malignancy risk in a cohort of Australian RA patients relative to the Australian population and to compare cancer risk for patients exposed to TNFi therapy versus a biologic-naïve group. Methods Demographic data for RA participants enrolled in the Australian Rheumatology Association Database (ARAD) before 31 Dec 2012 were matched to national cancer records in May 2016 (linkage complete to 2012). Standardised incidence ratios (SIRs) were used to compare malignancy incidence in TNFi-exposed and biologic-naïve ARAD participants with the Australian general population using site-, age- and sex-specific rates by calendar year. Malignancy incidence in TNFi-exposed participants and biologic-naïve RA patients, were compared using rate ratios (RRs), adjusted for age, sex, smoking, methotrexate use and prior malignancy. Results There were 107 malignancies reported after 10,120 person-years in the TNFi-exposed group (N = 2451) and 49 malignancies after 2232 person-years in the biologic-naïve group (N = 574). Compared with the general population, biologic-naïve RA patients showed an increased risk for overall malignancy (SIR 1.52 (95% confidence interval (CI) 1.16, 2.02) prostate cancer (SIR 2.10, 95% CI 1.18, 4.12). The risk of lung cancer was increased for both biologic naïve and TNFi-exposed patients compared with the general population (SIR 2.69 (95% CI 1.43 to 5.68) and SIR 1.69 (95% CI 1.05 to 2.90) respectively). For the TNFi-exposed patients there was an increased risk of lymphoid cancers (SIR 1.82, 95% CI 1.12, 3.18). There were no differences between the exposure groups in the risk of cancer for any of the specific sites examined. Conclusions Overall malignancy incidence was elevated for biologic-naïve RA patients but not for those exposed to TNFi. TNFi exposure did not increase malignancy risk beyond that experienced by biologic-naïve patients. Lung cancer risk was increased for both TNFi-treated and biologic-naïve RA patients compared with the general population suggesting that RA status or RA treatments other than TNFi may be responsible in some way
    corecore