114 research outputs found

    Altering an Artificial Gagpolnef Polyprotein and Mode of ENV Co-Administration Affects the Immunogenicity of a Clade C HIV DNA Vaccine

    Get PDF
    HIV-1 candidate vaccines expressing an artificial polyprotein comprising Gag, Pol and Nef (GPN) and a secreted envelope protein (Env) were shown in recent Phase I/II clinical trials to induce high levels of polyfunctional T cell responses; however, Env-specific responses clearly exceeded those against Gag. Here, we assess the impact of the GPN immunogen design and variations in the formulation and vaccination regimen of a combined GPN/Env DNA vaccine on the T cell responses against the various HIV proteins. Subtle modifications were introduced into the GPN gene to increase Gag expression, modify the expression ratio of Gag to PolNef and support budding of virus-like particles. I.m. administration of the various DNA constructs into BALB/c mice resulted in an up to 10-fold increase in Gag- and Pol-specific IFNγ+ CD8+ T cells compared to GPN. Co-administering Env with Gag or GPN derivatives largely abrogated Gag-specific responses. Alterations in the molar ratio of the DNA vaccines and spatially or temporally separated administration induced more balanced T cell responses. Whereas forced co-expression of Gag and Env from one plasmid induced predominantly Env-specific T cells responses, deletion of the only H-2d T cell epitope in Env allowed increased levels of Gag-specific T cells, suggesting competition at an epitope level. Our data demonstrate that the biochemical properties of an artificial polyprotein clearly influence the levels of antigen-specific T cells, and variations in formulation and schedule can overcome competition for the induction of these responses. These results are guiding the design of ongoing pre-clinical and clinical trials

    Synthesis of Janus compounds for the recognition of G-U mismatched nucleobase pairs

    Get PDF
    The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and 1H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation

    Accurate classification of RNA structures using topological fingerprints

    Get PDF
    While RNAs are well known to possess complex structures, functionally similar RNAs often have little sequence similarity. While the exact size and spacing of base-paired regions vary, functionally similar RNAs have pronounced similarity in the arrangement, or topology, of base-paired stems. Furthermore, predicted RNA structures often lack pseudoknots (a crucial aspect of biological activity), and are only partially correct, or incomplete. A topological approach addresses all of these difficulties. In this work we describe each RNA structure as a graph that can be converted to a topological spectrum (RNA fingerprint). The set of subgraphs in an RNA structure, its RNA fingerprint, can be compared with the fingerprints of other RNA structures to identify and correctly classify functionally related RNAs. Topologically similar RNAs can be identified even when a large fraction, up to 30%, of the stems are omitted, indicating that highly accurate structures are not necessary. We investigate the performance of the RNA fingerprint approach on a set of eight highly curated RNA families, with diverse sizes and functions, containing pseudoknots, and with little sequence similarity–an especially difficult test set. In spite of the difficult test set, the RNA fingerprint approach is very successful (ROC AUC \u3e 0.95). Due to the inclusion of pseudoknots, the RNA fingerprint approach both covers a wider range of possible structures than methods based only on secondary structure, and its tolerance for incomplete structures suggests that it can be applied even to predicted structures. Source code is freely available at https://github.rcac.purdue.edu/mgribsko/XIOS_RNA_fingerprint

    Conjugation of a Ru(II) Arene Complex to Neomycin or to Guanidinoneomycin Leads to Compounds with Differential Cytotoxicities and Accumulation between Cancer and Normal Cells

    Get PDF
    A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides

    Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome

    Get PDF

    ChainKnot

    No full text
    • …
    corecore