14 research outputs found

    Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies

    Full text link
    We present first results from the Near-infrared Integral Field Spectrograph (NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A we observe rotationally-supported accretion disks and adduce the existence of massive central black holes and estimate their masses. In Cygnus A we also see remarkable high-excitation ionization cones dominated by photoionization from the central engine. In the T-Tauri stars HV Tau C and DG Tau we see highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7 figures. Accepted for publication in Astrophysics & Space Scienc

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability & diversity

    Get PDF
    Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the MIR wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large MIR exoplanet mission within the scope of the "Voyage 2050" long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large MIR exoplanet imaging mission will be needed to help answer one of mankind's most fundamental questions: "How unique is our Earth?"Stars and planetary system

    Hubble Space Telescope WFPC2 imaging of the disk and jet of HV Tauri C

    No full text
    We have obtained Hubble Space Telescope (HST) WFPC2 images of the HV Tauri young triple system. The tertiary star appears as a compact bipolar nebula at visual wavelengths as already known in the near-infrared. New, deeper adaptive optics observations made at the Canada-France-Hawaii Telescope show no point source in the nebula to a limiting magnitude of K>15. The results therefore confirm that HV Tau C is an optically thick circumstellar disk seen close to edge-on. Clear evidence for small, chromatic dust particles in the outer disk is provided by the color structure of the nebula: the thickness of the central dust lane shrinks by 30% between 0.55 and 2.2 ÎŒm. Bipolar jets extending 0.3"-0.7" perpendicular to the dust lane are seen in HST narrowband [S II] and [O I] images. The continuum images are compared to multiple scattering models, with optimal density model parameters derived through χ2 minimization. A disk density distribution provides a reasonable fit to the K-band image but is unable to reproduce the vertical extent of the nebula at I band without resorting to an unreasonably large scale height. Adding an envelope structure around the disk results in a much better fit to the HST image, and with a physically reasonable disk scale height. Our preferred model has a disk outer radius of 50 AU, inclination of 6°, and scale height of 6.5 AU at r=50 AU. The thickness of the dark lane establishes a disk mass near 2×10-3Msolar (~2MJup) of dust and gas, if the dust grains have interstellar properties and remain fully mixed vertically. The envelope, with a much smaller mass ~4×10-5Msolar, would be very short-lived unless replenished by new material from the star or surrounding medium. Using the NASA/ESA Hubble Space Telescope

    A Highly Settled Disk around Oph163131

    No full text
    High dust density in the midplane of protoplanetary disks is favorable for efficient grain growth and can allow fast formation of planetesimals and planets, before disks dissipate. Vertical settling and dust trapping in pressure maxima are two mechanisms allowing dust to concentrate in geometrically thin and high-density regions. In this work, we aim to study these mechanisms in the highly inclined protoplanetary disk SSTC2D J163131.2-242627 (Oph 163131, i ?84°). We present new high-Angular-resolution continuum and 12CO ALMA observations of Oph 163131. The gas emission appears significantly more extended in the vertical and radial direction compared to the dust emission, consistent with vertical settling and possibly radial drift. In addition, the new continuum observations reveal two clear rings. The outer ring, located at ?100 au, is well-resolved in the observations, allowing us to put stringent constraints on the vertical extent of millimeter dust particles. We model the disk using radiative transfer and find that the scale height of millimeter-sized grains is 0.5 au or less at 100 au from the central star. This value is about one order of magnitude smaller than the scale height of smaller micron-sized dust grains constrained by previous modeling, which implies that efficient settling of the large grains is occurring in the disk. When adopting a parametric dust settling prescription, we find that the observations are consistent with a turbulent viscosity coefficient of about ? ?2 10-5 at 100 au. Finally, we find that the thin dust scale height measured in Oph 163131 is favorable for planetary growth by pebble accretion: A 10 M E planet may grow within less than 10 Myr, even in orbits exceeding 50 au. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore